IDEAS home Printed from https://ideas.repec.org/a/bpj/jqsprt/v7y2011i4n8.html
   My bibliography  Save this article

Rule of Tangent for Win-By-Two Games

Author

Listed:
  • Noubary Reza D.

    (Bloomsburg University)

  • Coles Drue

    (Bloomsburg University)

Abstract

Our study of win-by-two tie games is motivated by a famous 2010 Wimbledon tennis match whose final set was decided by the improbable score of 70-68. We introduce a trigonometric interpretation of the odds of winning points and games in tennis when serving from deuce. We place this result in the more general setting of a gambler's ruin problem and also propose a performance measure to quantify the serving and receiving skill of one player relative to another. Then we extend the analysis to table tennis and volleyball. These latter games are similar to tennis in that the winner must obtain a certain minimum score while leading by two points, but they differ in their determination of which player serves a given rally and in whether a point is awarded to the receiver for winning a rally. We quantify the impact of these differences on the outcomes of games, assuming that the probability for a player to win a single point does not change during a game. We also apply a Markov chain analysis to arrive at our earlier results for tennis and to calculate the expected length of a game after reaching deuce. Finally, we develop the idea of "equivalent games" so that the analysis can be carried out using only the probability of winning a point (that is, without regard for the question of which player is serving).

Suggested Citation

  • Noubary Reza D. & Coles Drue, 2011. "Rule of Tangent for Win-By-Two Games," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 7(4), pages 1-18, October.
  • Handle: RePEc:bpj:jqsprt:v:7:y:2011:i:4:n:8
    DOI: 10.2202/1559-0410.1309
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1559-0410.1309
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1559-0410.1309?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Newton Paul K & Aslam Kamran, 2009. "Monte Carlo Tennis: A Stochastic Markov Chain Model," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 5(3), pages 1-44, July.
    2. O'Malley A. James, 2008. "Probability Formulas and Statistical Analysis in Tennis," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 4(2), pages 1-23, April.
    3. Noubary Reza D, 2007. "Probabilistic Analysis of a Table Tennis Game," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 3(1), pages 1-20, January.
    4. Klaassen F. J G M & Magnus J. R., 2001. "Are Points in Tennis Independent and Identically Distributed? Evidence From a Dynamic Binary Panel Data Model," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 500-509, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chan Timothy C.Y. & Singal Raghav, 2018. "A Bayesian regression approach to handicapping tennis players based on a rating system," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 14(3), pages 131-141, September.
    2. Bizzozero, Paolo & Flepp, Raphael & Franck, Egon, 2016. "The importance of suspense and surprise in entertainment demand: Evidence from Wimbledon," Journal of Economic Behavior & Organization, Elsevier, vol. 130(C), pages 47-63.
    3. Kovalchik, Stephanie & Reid, Machar, 2019. "A calibration method with dynamic updates for within-match forecasting of wins in tennis," International Journal of Forecasting, Elsevier, vol. 35(2), pages 756-766.
    4. Pasteur R. Drew & Janning Michael C., 2011. "Monte Carlo Simulation for High School Football Playoff Seed Projection," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 7(2), pages 1-10, May.
    5. Alex Krumer & Mosi Rosenboim & Offer Moshe Shapir, 2016. "Gender, Competitiveness, and Physical Characteristics," Journal of Sports Economics, , vol. 17(3), pages 234-259, April.
    6. Holmes, Benjamin & McHale, Ian G. & Żychaluk, Kamila, 2023. "A Markov chain model for forecasting results of mixed martial arts contests," International Journal of Forecasting, Elsevier, vol. 39(2), pages 623-640.
    7. Cohen-Zada, Danny & Krumer, Alex & Rosenboim, Mosi & Shapir, Offer Moshe, 2017. "Choking under pressure and gender: Evidence from professional tennis," Journal of Economic Psychology, Elsevier, vol. 61(C), pages 176-190.
    8. Gil Aharoni & Oded H. Sarig, 2012. "Hot hands and equilibrium," Applied Economics, Taylor & Francis Journals, vol. 44(18), pages 2309-2320, June.
    9. Christophe Ley & Yves Dominicy, 2017. "Mutual Point-winning Probabilities (MPW): a New Performance Measure for Table Tennis," Working Papers ECARES ECARES 2017-23, ULB -- Universite Libre de Bruxelles.
    10. Klaassen, F.J.G.M. & Magnus, J.R., 2006. "Are Economic Agents Successful Optimizers? An Analysis Through Strategy in Tennis," Other publications TiSEM 73e12d86-8fe4-4a87-9181-7, Tilburg University, School of Economics and Management.
    11. Thierry Lallemand & Robert Plasman & François Rycx, 2008. "Women and Competition in Elimination Tournaments," Journal of Sports Economics, , vol. 9(1), pages 3-19, February.
    12. Guy Elaad & Alex Krumer & Jeffrey Kantor, 2018. "Corruption and Sensitive Soccer Games: Cross-Country Evidence," The Journal of Law, Economics, and Organization, Oxford University Press, vol. 34(3), pages 364-394.
    13. Deutscher, Christian & Neuberg, Lena & Thiem, Stefan, 2023. "Who’s afraid of the GOATs? - Shadow effects of tennis superstars," Journal of Economic Psychology, Elsevier, vol. 99(C).
    14. Gimenez-Egido, José María & Ortega-Toro, Enrique & Palao, José M & Torres-Luque, Gema, 2020. "Effect of scaling equipment on U-10 players tennis serve during match-play: A nonlinear pedagogical approach," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    15. Romain Gauriot & Lionel Page & John Wooders, 2016. "Nash at Wimbledon: Evidence from Half a Million Serves," QuBE Working Papers 046, QUT Business School.
    16. Legge, Stefan & Schmid, Lukas, 2013. "Rankings, Random Successes, and Individual Performance," Economics Working Paper Series 1340, University of St. Gallen, School of Economics and Political Science.
    17. Picchio, Matteo & van Ours, Jan C., 2024. "The impact of high temperatures on performance in work-related activities," Labour Economics, Elsevier, vol. 87(C).
    18. Tomi Ovaska & Albert J. Sumell, 2014. "Who Has The Advantage? An Economic Exploration of Winning in Men's Professional Tennis," The American Economist, Sage Publications, vol. 59(1), pages 34-51, May.
    19. Pettigrew Stephen, 2014. "How the West will be won: using Monte Carlo simulations to estimate the effects of NHL realignment," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 10(3), pages 345-355, September.
    20. Gery Geenens & Thomas Cuddihy, 2018. "Non‐parametric evidence of second‐leg home advantage in European football," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1009-1031, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jqsprt:v:7:y:2011:i:4:n:8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.