A generative model for predicting outcomes in college basketball
Author
Abstract
Suggested Citation
DOI: 10.1515/jqas-2014-0055
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Gianluca Baio & Marta Blangiardo, 2010. "Bayesian hierarchical model for the prediction of football results," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(2), pages 253-264.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ludden Ian G. & Khatibi Arash & King Douglas M. & Jacobson Sheldon H., 2020. "Models for generating NCAA men’s basketball tournament bracket pools," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 16(1), pages 1-15, March.
- Santos-Fernandez Edgar & Wu Paul & Mengersen Kerrie L., 2019. "Bayesian statistics meets sports: a comprehensive review," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 15(4), pages 289-312, December.
- Gavin A. Whitaker & Ricardo Silva & Daniel Edwards & Ioannis Kosmidis, 2021. "A Bayesian approach for determining player abilities in football," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 174-201, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Luke S. Benz & Michael J. Lopez, 2023. "Estimating the change in soccer’s home advantage during the Covid-19 pandemic using bivariate Poisson regression," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 205-232, March.
- Andrés Ramírez Hassan & Johnatan Cardona Jiménez, 2014. "Which team will win the 2014 FIFA World Cup? A Bayesian approach for dummies," Documentos de Trabajo de Valor Público 10898, Universidad EAFIT.
- Jacek Osiewalski & Jerzy Marzec, 2019. "Joint modelling of two count variables when one of them can be degenerate," Computational Statistics, Springer, vol. 34(1), pages 153-171, March.
- Leonardo Egidi & Nicola Torelli, 2021. "Comparing Goal-Based and Result-Based Approaches in Modelling Football Outcomes," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 801-813, August.
- Constantinou Anthony Costa & Fenton Norman Elliott, 2012. "Solving the Problem of Inadequate Scoring Rules for Assessing Probabilistic Football Forecast Models," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(1), pages 1-14, March.
- Anthony J. Vine, 2016. "Using Pythagorean Expectation to Determine Luck in the KFC Big Bash League," Economic Papers, The Economic Society of Australia, vol. 35(3), pages 269-281, September.
- Ian McHale & Rose Baker, 2014. "Econometric modelling of match results and scores," Chapters, in: John Goddard & Peter Sloane (ed.), Handbook on the Economics of Professional Football, chapter 9, pages 130-140, Edward Elgar Publishing.
- Anna Bykova & Dennis Coates, 2022. "Professional team sporting success: do economic and personal freedom provide competitive advantages?," Economics of Governance, Springer, vol. 23(3), pages 323-358, December.
- Santos-Fernandez Edgar & Wu Paul & Mengersen Kerrie L., 2019. "Bayesian statistics meets sports: a comprehensive review," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 15(4), pages 289-312, December.
- Robert C. Smit & Francesco Ravazzolo & Luca Rossini, 2020. "Dynamic Bayesian forecasting of English Premier League match results with the Skellam distribution," BEMPS - Bozen Economics & Management Paper Series BEMPS72, Faculty of Economics and Management at the Free University of Bozen.
- Gavin A. Whitaker & Ricardo Silva & Daniel Edwards & Ioannis Kosmidis, 2021. "A Bayesian approach for determining player abilities in football," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 174-201, January.
- Federico Fioravanti & Fernando Delbianco & Fernando Tohmé, 2023. "The relative importance of ability, luck and motivation in team sports: a Bayesian model of performance in the English Rugby Premiership," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 715-731, September.
- Yuvraj Sunecher & Naushad Mamode Khan & Vandna Jowaheer & Marcelo Bourguignon & Mohammad Arashi, 2019. "A Primer on a Flexible Bivariate Time Series Model for Analyzing First and Second Half Football Goal Scores: The Case of the Big 3 London Rivals in the EPL," Annals of Data Science, Springer, vol. 6(3), pages 531-548, September.
- Giovanni Angelini & Luca De Angelis, 2017.
"PARX model for football match predictions,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(7), pages 795-807, November.
- Giovanni Angelini & Luca De Angelis, 2016. "PARX model for football matches predictions," Quaderni di Dipartimento 2, Department of Statistics, University of Bologna.
- Silvia Montagna & Vanessa Orani & Raffaele Argiento, 2021. "Bayesian isotonic logistic regression via constrained splines: an application to estimating the serve advantage in professional tennis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 573-604, June.
- Riccardo Ievoli & Aldo Gardini & Lucio Palazzo, 2023. "The role of passing network indicators in modeling football outcomes: an application using Bayesian hierarchical models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 153-175, March.
- Rose D. Baker & Ian G. McHale, 2015. "Time varying ratings in association football: the all-time greatest team is.," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(2), pages 481-492, February.
More about this item
Keywords
NCAA tournament; Poisson factorization; Probabilistic modeling; variational inference;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jqsprt:v:11:y:2015:i:1:p:39-52:n:3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.