IDEAS home Printed from https://ideas.repec.org/a/bpj/jossai/v5y2017i3p216-228n2.html
   My bibliography  Save this article

Investigating the Disparities of China’s Insurance Market Based on Minimum Spanning Tree from the Viewpoint of Geography and Enterprise

Author

Listed:
  • Xie Chi

    (College of Business Administration, Hunan University, Changsha410082, China)

  • Zhou Yingying

    (College of Business Administration, Hunan University, Changsha410082, China)

  • Wang Gangjin

    (College of Business Administration, Hunan University, Changsha410082, China)

  • Yan Xinguo

    (College of Business Administration, Hunan University, Changsha410082, China)

Abstract

In this paper, we investigate the disparities of China’s insurance market from the viewpoint of geography and enterprise by using the monthly data from January 2006 to December 2015. We divide the whole insurance market into two parts, namely property insurance and personal insurance. By constructing and analyzing minimum spanning trees of insurance market, we obtain the results as follows: (i) The connections between provinces are much closer than those of firms, and there are regional links between neighboring provinces in the minimum spanning tree (MST); and (ii) the domestic funded firms and foreign funded firms form two explicit clusters in the MSTs of property and personal insurance market.

Suggested Citation

  • Xie Chi & Zhou Yingying & Wang Gangjin & Yan Xinguo, 2017. "Investigating the Disparities of China’s Insurance Market Based on Minimum Spanning Tree from the Viewpoint of Geography and Enterprise," Journal of Systems Science and Information, De Gruyter, vol. 5(3), pages 216-228, June.
  • Handle: RePEc:bpj:jossai:v:5:y:2017:i:3:p:216-228:n:2
    DOI: 10.21078/JSSI-2017-216-13
    as

    Download full text from publisher

    File URL: https://doi.org/10.21078/JSSI-2017-216-13
    Download Restriction: no

    File URL: https://libkey.io/10.21078/JSSI-2017-216-13?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wang, Gang-Jin & Xie, Chi & Han, Feng & Sun, Bo, 2012. "Similarity measure and topology evolution of foreign exchange markets using dynamic time warping method: Evidence from minimal spanning tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4136-4146.
    2. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    3. Wang, Gang-Jin & Xie, Chi, 2015. "Correlation structure and dynamics of international real estate securities markets: A network perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 176-193.
    4. Giovanni Bonanno & Nicolas Vandewalle & Rosario N. Mantegna, 2000. "Taxonomy of Stock Market Indices," Papers cond-mat/0001268, arXiv.org, revised Aug 2000.
    5. Gilmore, Claire G. & Lucey, Brian M. & Boscia, Marian W., 2010. "Comovements in government bond markets: A minimum spanning tree analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4875-4886.
    6. David Matesanz & Guillermo Ortega, 2014. "Network analysis of exchange data: interdependence drives crisis contagion," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(4), pages 1835-1851, July.
    7. Coelho, Ricardo & Gilmore, Claire G. & Lucey, Brian & Richmond, Peter & Hutzler, Stefan, 2007. "The evolution of interdependence in world equity markets—Evidence from minimum spanning trees," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 455-466.
    8. Lee, Junghoon & Youn, Janghyuk & Chang, Woojin, 2012. "Intraday volatility and network topological properties in the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1354-1360.
    9. Radhakrishnan, Srinivasan & Duvvuru, Arjun & Sultornsanee, Sivarit & Kamarthi, Sagar, 2016. "Phase synchronization based minimum spanning trees for analysis of financial time series with nonlinear correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 259-270.
    10. Di Matteo, T. & Aste, T. & Hyde, S.T. & Ramsden, S., 2005. "Interest rates hierarchical structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 21-33.
    11. Brida, Juan Gabriel & Matesanz, David & Seijas, Maria Nela, 2016. "Network analysis of returns and volume trading in stock markets: The Euro Stoxx case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 751-764.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    2. Gang-Jin Wang & Chi Xie & H. Eugene Stanley, 2018. "Correlation Structure and Evolution of World Stock Markets: Evidence from Pearson and Partial Correlation-Based Networks," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 607-635, March.
    3. Huang, Wei-Qiang & Yao, Shuang & Zhuang, Xin-Tian & Yuan, Ying, 2017. "Dynamic asset trees in the US stock market: Structure variation and market phenomena," Chaos, Solitons & Fractals, Elsevier, vol. 94(C), pages 44-53.
    4. Esmalifalak, Hamidreza, 2022. "Euclidean (dis)similarity in financial network analysis," Global Finance Journal, Elsevier, vol. 53(C).
    5. Huang, Wei-Qiang & Zhuang, Xin-Tian & Yao, Shuang & Uryasev, Stan, 2016. "A financial network perspective of financial institutions’ systemic risk contributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 183-196.
    6. Lee, Junghoon & Youn, Janghyuk & Chang, Woojin, 2012. "Intraday volatility and network topological properties in the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1354-1360.
    7. Deviren, Seyma Akkaya & Deviren, Bayram, 2016. "The relationship between carbon dioxide emission and economic growth: Hierarchical structure methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 429-439.
    8. Kim, Kyungwon & Jung, Sean S., 2014. "Empirical analysis of structural change in Credit Default Swap volatility," Chaos, Solitons & Fractals, Elsevier, vol. 60(C), pages 56-67.
    9. Wang, Gang-Jin & Xie, Chi, 2015. "Correlation structure and dynamics of international real estate securities markets: A network perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 176-193.
    10. Gang-Jin Wang & Chi Xie & Shou Chen, 2017. "Multiscale correlation networks analysis of the US stock market: a wavelet analysis," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(3), pages 561-594, October.
    11. Trancoso, Tiago, 2014. "Emerging markets in the global economic network: Real(ly) decoupling?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 499-510.
    12. Djauhari, Maman Abdurachman & Gan, Siew Lee, 2015. "Optimality problem of network topology in stocks market analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 108-114.
    13. Sandoval, Leonidas, 2014. "To lag or not to lag? How to compare indices of stock markets that operate on different times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 227-243.
    14. Artur F. Tomeczek & Tomasz M. Napiórkowski, 2024. "PageRank and Regression as a Two-Step Approach to Analysing a Network of Nasdaq Firms During a Recession: Insights from Minimum Spanning Tree Topology," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 3, pages 56-69.
    15. Tabak, Benjamin M. & Luduvice, André Victor D. & Cajueiro, Daniel O., 2011. "Modeling default probabilities: The case of Brazil," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 21(4), pages 513-534, October.
    16. Carlos León & Geun-Young Kim & Constanza Martínez & Daeyup Lee, 2017. "Equity markets’ clustering and the global financial crisis," Quantitative Finance, Taylor & Francis Journals, vol. 17(12), pages 1905-1922, December.
    17. Výrost, Tomáš & Lyócsa, Štefan & Baumöhl, Eduard, 2015. "Granger causality stock market networks: Temporal proximity and preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 262-276.
    18. Zhang, Xin & Podobnik, Boris & Kenett, Dror Y. & Eugene Stanley, H., 2014. "Systemic risk and causality dynamics of the world international shipping market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 43-53.
    19. Jae Woo Lee & Ashadun Nobi, 2018. "State and Network Structures of Stock Markets around the Global Financial Crisis," Papers 1806.04363, arXiv.org.
    20. Yong Tang & Jason Jie Xiong & Zi-Yang Jia & Yi-Cheng Zhang, 2018. "Complexities in Financial Network Topological Dynamics: Modeling of Emerging and Developed Stock Markets," Complexity, Hindawi, vol. 2018, pages 1-31, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jossai:v:5:y:2017:i:3:p:216-228:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.