IDEAS home Printed from https://ideas.repec.org/a/sgh/gosnar/y2024i3p56-69.html
   My bibliography  Save this article

PageRank and Regression as a Two-Step Approach to Analysing a Network of Nasdaq Firms During a Recession: Insights from Minimum Spanning Tree Topology

Author

Listed:
  • Artur F. Tomeczek
  • Tomasz M. Napiórkowski

Abstract

The presence of focal firms driving entire stock markets has been proven by a series of existing studies that relied on the topological properties of minimum spanning trees. Historically, central firms have been identified primarily based on the degree centrality of nodes. This article proposes an alternative selection method, combining PageRank scores and modularity classes, which does away with the problem of ties in rankings when selecting a specific number of nodes. We use PageRank-based network analysis along with regression analysis to identify focal firms in the Nasdaq-100 index during the three most significant recent recessions in the United States. This approach validates and robustly supports our two-step method, showing that the combination of minimum spanning trees and our selection method explains over 90% of the Nasdaq-100 index’s dynamics. The analysis identified significant topological changes during the global financial crisis (with CSCO emerging as the star firm) and the COVID-19 pandemic (exhibiting strong market co-movements).

Suggested Citation

  • Artur F. Tomeczek & Tomasz M. Napiórkowski, 2024. "PageRank and Regression as a Two-Step Approach to Analysing a Network of Nasdaq Firms During a Recession: Insights from Minimum Spanning Tree Topology," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 3, pages 56-69.
  • Handle: RePEc:sgh:gosnar:y:2024:i:3:p:56-69
    as

    Download full text from publisher

    File URL: https://gnpje.sgh.waw.pl/pdf-187564-114975
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. G. Bonanno & F. Lillo & R. N. Mantegna, 2001. "High-frequency cross-correlation in a set of stocks," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 96-104.
    2. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    3. Minoiu, Camelia & Reyes, Javier A., 2013. "A network analysis of global banking: 1978–2010," Journal of Financial Stability, Elsevier, vol. 9(2), pages 168-184.
    4. Jung, Woo-Sung & Chae, Seungbyung & Yang, Jae-Suk & Moon, Hie-Tae, 2006. "Characteristics of the Korean stock market correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 361(1), pages 263-271.
    5. Gang-Jin Wang & Shuyue Yi & Chi Xie & H. Eugene Stanley, 2021. "Multilayer information spillover networks: measuring interconnectedness of financial institutions," Quantitative Finance, Taylor & Francis Journals, vol. 21(7), pages 1163-1185, July.
    6. Okyu Kwon & Jae-Suk Yang, 2008. "Information flow between stock indices," Papers 0802.1747, arXiv.org.
    7. Stijn Claessens & Neeltje van Horen, 2015. "The Impact of the Global Financial Crisis on Banking Globalization," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 63(4), pages 868-918, November.
    8. Dias, João, 2012. "Sovereign debt crisis in the European Union: A minimum spanning tree approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2046-2055.
    9. Yun, Tae-Sub & Jeong, Deokjong & Park, Sunyoung, 2019. "“Too central to fail” systemic risk measure using PageRank algorithm," Journal of Economic Behavior & Organization, Elsevier, vol. 162(C), pages 251-272.
    10. Giovanni Bonanno & Nicolas Vandewalle & Rosario N. Mantegna, 2000. "Taxonomy of Stock Market Indices," Papers cond-mat/0001268, arXiv.org, revised Aug 2000.
    11. Papana, Angeliki & Kyrtsou, Catherine & Kugiumtzis, Dimitris & Diks, Cees, 2017. "Financial networks based on Granger causality: A case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 65-73.
    12. Hui-Ju Tsai & Yangru Wu, 2022. "Changes in Corporate Social Responsibility and Stock Performance," Journal of Business Ethics, Springer, vol. 178(3), pages 735-755, July.
    13. Renata Legenzova & Asta Gaigaliene & Otilija Jurakovaite, 2019. "Evaluation of the post-crisis EU banking network connectedness in the global context," Oeconomia Copernicana, Institute of Economic Research, vol. 10(1), pages 37-53, March.
    14. G. Bonanno & G. Caldarelli & F. Lillo & S. Micciché & N. Vandewalle & R. Mantegna, 2004. "Networks of equities in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 38(2), pages 363-371, March.
    15. Chuangxia Huang & Xian Zhao & Renli Su & Xiaoguang Yang & Xin Yang, 2022. "Dynamic network topology and market performance: A case of the Chinese stock market," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1962-1978, April.
    16. Gilmore, Claire G. & Lucey, Brian M. & Boscia, Marian W., 2010. "Comovements in government bond markets: A minimum spanning tree analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4875-4886.
    17. Gang-Jin Wang & Chi Xie & H. Eugene Stanley, 2018. "Correlation Structure and Evolution of World Stock Markets: Evidence from Pearson and Partial Correlation-Based Networks," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 607-635, March.
    18. Nie, Chun-Xiao & Song, Fu-Tie, 2023. "Stable versus fragile community structures in the correlation dynamics of Chinese industry indices," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    19. LAMBIOTTE, Renaud & DELVENNE, Jean-Charles & BARAHONA, Mauricio, 2014. "Random walks, Markov processes and the multiscale modular organization of complex network," LIDAM Reprints CORE 2660, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    20. Bilal Ahmed Memon & Hongxing Yao & Rabia Tahir, 2020. "General election effect on the network topology of Pakistan’s stock market: network-based study of a political event," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-14, December.
    21. Stijn Claessens & Neeltje van Horen, 2015. "The Impact of the Global Financial Crisis on Banking Globalization," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 63(4), pages 868-918, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Yue & Qing Cai & Wanfeng Yan & Wei-Xing Zhou, 2020. "Information flow networks of Chinese stock market sectors," Papers 2004.08759, arXiv.org.
    2. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    3. Gerson N. Cardoso & Geraldo E. Silva, 2024. "Electoral influences on the Brazilian B3 data correlation network," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(1), pages 251-272, January.
    4. Majapa, Mohamed & Gossel, Sean Joss, 2016. "Topology of the South African stock market network across the 2008 financial crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 35-47.
    5. Sandoval, Leonidas, 2014. "To lag or not to lag? How to compare indices of stock markets that operate on different times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 227-243.
    6. Carlos León & Geun-Young Kim & Constanza Martínez & Daeyup Lee, 2017. "Equity markets’ clustering and the global financial crisis," Quantitative Finance, Taylor & Francis Journals, vol. 17(12), pages 1905-1922, December.
    7. Gustavo Peralta, 2015. "Network-based Measures as Leading Indicators of Market Instability: The case of the Spanish Stock," CNMV Working Papers CNMV Working Papers no 59, CNMV- Spanish Securities Markets Commission - Research and Statistics Department.
    8. Zhang, Xin & Podobnik, Boris & Kenett, Dror Y. & Eugene Stanley, H., 2014. "Systemic risk and causality dynamics of the world international shipping market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 43-53.
    9. Lee, Junghoon & Youn, Janghyuk & Chang, Woojin, 2012. "Intraday volatility and network topological properties in the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1354-1360.
    10. de Carvalho, Pablo Jose Campos & Gupta, Aparna, 2018. "A network approach to unravel asset price comovement using minimal dependence structure," Journal of Banking & Finance, Elsevier, vol. 91(C), pages 119-132.
    11. Vyrost, Tomas, 2015. "Country and industry effects in CEE stock market networks: Preliminary results," MPRA Paper 65775, University Library of Munich, Germany.
    12. Sensoy, Ahmet & Tabak, Benjamin M., 2014. "Dynamic spanning trees in stock market networks: The case of Asia-Pacific," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 387-402.
    13. Wen, Danyan & Ma, Chaoqun & Wang, Gang-Jin & Wang, Senzhang, 2018. "Investigating the features of pairs trading strategy: A network perspective on the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 903-918.
    14. Kazemilari, Mansooreh & Mardani, Abbas & Streimikiene, Dalia & Zavadskas, Edmundas Kazimieras, 2017. "An overview of renewable energy companies in stock exchange: Evidence from minimal spanning tree approach," Renewable Energy, Elsevier, vol. 102(PA), pages 107-117.
    15. Zhang, Yiting & Lee, Gladys Hui Ting & Wong, Jian Cheng & Kok, Jun Liang & Prusty, Manamohan & Cheong, Siew Ann, 2011. "Will the US economy recover in 2010? A minimal spanning tree study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2020-2050.
    16. Sandoval, Leonidas, 2012. "Pruning a minimum spanning tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2678-2711.
    17. Antonio Briola & Tomaso Aste, 2022. "Dependency structures in cryptocurrency market from high to low frequency," Papers 2206.03386, arXiv.org, revised Dec 2022.
    18. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.
    19. Andrea Di Iura, 2022. "Comparison of empirical and shrinkage correlation algorithm for clustering methods in the futures market," SN Business & Economics, Springer, vol. 2(8), pages 1-17, August.
    20. Kazemilari, Mansooreh & Djauhari, Maman Abdurachman, 2015. "Correlation network analysis for multi-dimensional data in stocks market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 62-75.

    More about this item

    Keywords

    regression; minimum spanning tree; recession; crisis; stock market;
    All these keywords.

    JEL classification:

    • D85 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Network Formation
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • L14 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Transactional Relationships; Contracts and Reputation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sgh:gosnar:y:2024:i:3:p:56-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Grzegorz Konat (email available below). General contact details of provider: https://edirc.repec.org/data/sgwawpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.