IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v6y2010i2n14.html
   My bibliography  Save this article

Comparing Approaches to Causal Inference for Longitudinal Data: Inverse Probability Weighting versus Propensity Scores

Author

Listed:
  • Ertefaie Ashkan

    (McGill University)

  • Stephens David A

    (McGill University)

Abstract

In observational studies for causal effects, treatments are assigned to experimental units without the benefits of randomization. As a result, there is the potential for bias in the estimation of the treatment effect. Two methods for estimating the causal effect consistently are Inverse Probability of Treatment Weighting (IPTW) and the Propensity Score (PS). We demonstrate that in many simple cases, the PS method routinely produces estimators with lower Mean-Square Error (MSE). In the longitudinal setting, estimation of the causal effect of a time-dependent exposure in the presence of time-dependent covariates that are themselves affected by previous treatment also requires adjustment approaches. We describe an alternative approach to the classical binary treatment propensity score termed the Generalized Propensity Score (GPS). Previously, the GPS has mainly been applied in a single interval setting; we use an extension of the GPS approach to the longitudinal setting. We compare the strengths and weaknesses of IPTW and GPS for causal inference in three simulation studies and two real data sets. Again, in simulation, the GPS appears to produce estimators with lower MSE.

Suggested Citation

  • Ertefaie Ashkan & Stephens David A, 2010. "Comparing Approaches to Causal Inference for Longitudinal Data: Inverse Probability Weighting versus Propensity Scores," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-24, March.
  • Handle: RePEc:bpj:ijbist:v:6:y:2010:i:2:n:14
    DOI: 10.2202/1557-4679.1198
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1557-4679.1198
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1557-4679.1198?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    2. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
    3. Chamberlain, Gary, 1987. "Asymptotic efficiency in estimation with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 34(3), pages 305-334, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Radice Rosalba & Ramsahai Roland & Grieve Richard & Kreif Noemi & Sadique Zia & Sekhon Jasjeet S., 2012. "Evaluating treatment effectiveness in patient subgroups: a comparison of propensity score methods with an automated matching approach," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-45, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeffrey M. Wooldridge, 2004. "Estimating average partial effects under conditional moment independence assumptions," CeMMAP working papers CWP03/04, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Prokhorov, Artem & Schmidt, Peter, 2009. "GMM redundancy results for general missing data problems," Journal of Econometrics, Elsevier, vol. 151(1), pages 47-55, July.
    3. Graham, Bryan S. & Pinto, Cristine Campos de Xavier, 2022. "Semiparametrically efficient estimation of the average linear regression function," Journal of Econometrics, Elsevier, vol. 226(1), pages 115-138.
    4. Chris Muris, 2020. "Efficient GMM Estimation with Incomplete Data," The Review of Economics and Statistics, MIT Press, vol. 102(3), pages 518-530, July.
    5. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    6. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2016. "Double/Debiased Machine Learning for Treatment and Causal Parameters," Papers 1608.00060, arXiv.org, revised Nov 2024.
    7. Taisuke Otsu & Mengshan Xu, 2022. "Isotonic propensity score matching," STICERD - Econometrics Paper Series 623, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    8. Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022. "Locally Robust Semiparametric Estimation," Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.
    9. Mengshan Xu & Taisuke Otsu, 2022. "Isotonic propensity score matching," Papers 2207.08868, arXiv.org, revised Aug 2024.
    10. Kitagawa, Toru & Muris, Chris, 2016. "Model averaging in semiparametric estimation of treatment effects," Journal of Econometrics, Elsevier, vol. 193(1), pages 271-289.
    11. Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
    12. Alberto Abadie & Guido W. Imbens, 2002. "Simple and Bias-Corrected Matching Estimators for Average Treatment Effects," NBER Technical Working Papers 0283, National Bureau of Economic Research, Inc.
    13. Michael C. Knaus, 2021. "A double machine learning approach to estimate the effects of musical practice on student’s skills," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 282-300, January.
    14. Jesse Rothstein & Albert Yoon, 2006. "Mismatch in Law School," Working Papers 29, Princeton University, School of Public and International Affairs, Education Research Section..
    15. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2008. "Nonparametric Tests for Treatment Effect Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 389-405, August.
    16. Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021. "A unified framework for efficient estimation of general treatment models," Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
    17. Luo, Yu & Graham, Daniel J. & McCoy, Emma J., 2023. "Semiparametric Bayesian doubly robust causal estimation," LSE Research Online Documents on Economics 117944, London School of Economics and Political Science, LSE Library.
    18. Jinyong Hahn & Keisuke Hirano & Dean Karlan, 2011. "Adaptive Experimental Design Using the Propensity Score," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 96-108, January.
    19. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2006. "Moving the Goalposts: Addressing Limited Overlap in the Estimation of Average Treatment Effects by Changing the Estimand," NBER Technical Working Papers 0330, National Bureau of Economic Research, Inc.
    20. Andrew Chesher & Erich Battistin, 2004. "The Impact of Measurement Error on Evaluation Methods Based on Strong Ignorability," Econometric Society 2004 North American Summer Meetings 339, Econometric Society.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:6:y:2010:i:2:n:14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.