IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v60y1998i1p71-87.html
   My bibliography  Save this article

Analysis of longitudinal binary data from multiphase sampling

Author

Listed:
  • David Clayton
  • David Spiegelhalter
  • Graham Dunn
  • Andrew Pickles

Abstract

The efficient use of surrogate or auxiliary information has been investigated within both model‐based and design‐based approaches to data analysis, particularly in the context of missing data. Here we consider the use of such data in epidemiological studies of disease incidence in which surrogate measures of disease status are available for all subjects at two time points, but definitive diagnoses are available only in stratified subsamples. We briefly review methods for the analysis of two‐phase studies of disease prevalence at a single time point, and we discuss the extension of four of these methods to the analysis of incidence studies. Their performance is compared with special reference to a study of the incidence of senile dementia.

Suggested Citation

  • David Clayton & David Spiegelhalter & Graham Dunn & Andrew Pickles, 1998. "Analysis of longitudinal binary data from multiphase sampling," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(1), pages 71-87.
  • Handle: RePEc:bla:jorssb:v:60:y:1998:i:1:p:71-87
    DOI: 10.1111/1467-9868.00109
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9868.00109
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9868.00109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen-Ming Lee & T. Martin Lukusa & Chin-Shang Li, 2020. "Estimation of a zero-inflated Poisson regression model with missing covariates via nonparametric multiple imputation methods," Computational Statistics, Springer, vol. 35(2), pages 725-754, June.
    2. repec:jss:jstsof:43:i13 is not listed on IDEAS
    3. Richard M. Golden & Steven S. Henley & Halbert White & T. Michael Kashner, 2019. "Consequences of Model Misspecification for Maximum Likelihood Estimation with Missing Data," Econometrics, MDPI, vol. 7(3), pages 1-27, September.
    4. James R. Carpenter & Michael G. Kenward & Stijn Vansteelandt, 2006. "A comparison of multiple imputation and doubly robust estimation for analyses with missing data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(3), pages 571-584, July.
    5. Rubin Daniel B & van der Laan Mark J., 2008. "Empirical Efficiency Maximization: Improved Locally Efficient Covariate Adjustment in Randomized Experiments and Survival Analysis," The International Journal of Biostatistics, De Gruyter, vol. 4(1), pages 1-42, May.
    6. Sophia Rabe-Hesketh & Anders Skrondal, 2007. "Multilevel and Latent Variable Modeling with Composite Links and Exploded Likelihoods," Psychometrika, Springer;The Psychometric Society, vol. 72(2), pages 123-140, June.
    7. Lois G. Kim & Simon G. Thompson, 2011. "Estimation of life‐years gained and cost effectiveness based on cause‐specific mortality," Health Economics, John Wiley & Sons, Ltd., vol. 20(7), pages 842-852, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:60:y:1998:i:1:p:71-87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.