IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v12y2016i2p12n13.html
   My bibliography  Save this article

Multiple Comparisons Using Composite Likelihood in Clustered Data

Author

Listed:
  • Azadbakhsh Mahdis

    (Department of Statistics and Mathematics, York University, Toronto, ON M3J 1P3, Canada)

  • Gao Xin

    (Department of Statistics and Mathematics, York University, Toronto, ON M3J 1P3, Canada)

  • Jankowski Hanna

    (Department of Statistics and Mathematics, York University, Toronto, ON M3J 1P3, Canada)

Abstract

We study the problem of multiple hypothesis testing for correlated clustered data. As the existing multiple comparison procedures based on maximum likelihood estimation could be computationally intensive, we propose to construct multiple comparison procedures based on composite likelihood method. The new test statistics account for the correlation structure within the clusters and are computationally convenient to compute. Simulation studies show that the composite likelihood based procedures maintain good control of the familywise type I error rate in the presence of intra-cluster correlation, whereas ignoring the correlation leads to erratic performance.

Suggested Citation

  • Azadbakhsh Mahdis & Gao Xin & Jankowski Hanna, 2016. "Multiple Comparisons Using Composite Likelihood in Clustered Data," The International Journal of Biostatistics, De Gruyter, vol. 12(2), pages 1-12, November.
  • Handle: RePEc:bpj:ijbist:v:12:y:2016:i:2:p:12:n:13
    DOI: 10.1515/ijb-2016-0004
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/ijb-2016-0004
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/ijb-2016-0004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cristiano Varin, 2008. "On composite marginal likelihoods," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(1), pages 1-28, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," Economics Papers 2009-W12, Economics Group, Nuffield College, University of Oxford.
    2. Cavit Pakel & Neil Shephard & Kevin Sheppard & Robert F. Engle, 2021. "Fitting Vast Dimensional Time-Varying Covariance Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 652-668, July.
    3. Paik, Jane & Ying, Zhiliang, 2012. "A composite likelihood approach for spatially correlated survival data," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 209-216, January.
    4. Singh, Abhilash C. & Faghih Imani, Ahmadreza & Sivakumar, Aruna & Luna Xi, Yang & Miller, Eric J., 2024. "A joint analysis of accessibility and household trip frequencies by travel mode," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    5. Costa, Rui J. & Wilkinson-Herbots, Hilde M., 2021. "Inference of gene flow in the process of speciation: Efficient maximum-likelihood implementation of a generalised isolation-with-migration model," Theoretical Population Biology, Elsevier, vol. 140(C), pages 1-15.
    6. Vassilis Vasdekis & Silvia Cagnone & Irini Moustaki, 2012. "A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 425-441, July.
    7. Lee Fawcett & David Walshaw, 2014. "Estimating the probability of simultaneous rainfall extremes within a region: a spatial approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(5), pages 959-976, May.
    8. Meisam Moghimbeygi & Mousa Golalizadeh, 2019. "A longitudinal model for shapes through triangulation," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(1), pages 99-121, March.
    9. Bhat, Chandra R. & Sener, Ipek N. & Eluru, Naveen, 2010. "A flexible spatially dependent discrete choice model: Formulation and application to teenagers' weekday recreational activity participation," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 903-921, September.
    10. Nobel, Anne & Lizin, Sebastien & Malina, Robert, 2023. "What drives the designation of protected areas? Accounting for spatial dependence using a composite marginal likelihood approach," Ecological Economics, Elsevier, vol. 205(C).
    11. Bartolucci, Francesco & Belotti, Federico & Peracchi, Franco, 2015. "Testing for time-invariant unobserved heterogeneity in generalized linear models for panel data," Journal of Econometrics, Elsevier, vol. 184(1), pages 111-123.
    12. N. Martín & L. Pardo & K. Zografos, 2019. "On divergence tests for composite hypotheses under composite likelihood," Statistical Papers, Springer, vol. 60(6), pages 1883-1919, December.
    13. Nikolay Gospodinov & Esfandiar Maasoumi, 2017. "General Aggregation of Misspecified Asset Pricing Models," FRB Atlanta Working Paper 2017-10, Federal Reserve Bank of Atlanta.
    14. Stanislav Anatolyev & Renat Khabibullin & Artem Prokhorov, 2012. "Reconstructing high dimensional dynamic distributions from distributions of lower dimension," Working Papers 12003, Concordia University, Department of Economics.
    15. A. Philip Dawid & Monica Musio & Laura Ventura, 2016. "Minimum Scoring Rule Inference," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 123-138, March.
    16. Nikoloulopoulos, Aristidis K., 2023. "Efficient and feasible inference for high-dimensional normal copula regression models," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    17. Larribe Fabrice & Lessard Sabin, 2008. "A Composite-Conditional-Likelihood Approach for Gene Mapping Based on Linkage Disequilibrium in Windows of Marker Loci," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-33, August.
    18. Francesco Bartolucci & Claudia Pigini & Francesco Valentini, 2024. "MCMC conditional maximum likelihood for the two-way fixed-effects logit," Econometric Reviews, Taylor & Francis Journals, vol. 43(6), pages 379-404, July.
    19. Gourieroux, C. & Monfort, A., 2018. "Composite indirect inference with application to corporate risks," Econometrics and Statistics, Elsevier, vol. 7(C), pages 30-45.
    20. Huang Huang & Sameh Abdulah & Ying Sun & Hatem Ltaief & David E. Keyes & Marc G. Genton, 2021. "Competition on Spatial Statistics for Large Datasets," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(4), pages 580-595, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:12:y:2016:i:2:p:12:n:13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.