IDEAS home Printed from https://ideas.repec.org/a/bpj/ecqcon/v21y2006i2p261-270n9.html
   My bibliography  Save this article

Weibull Extension of Bivariate Exponential Regression Model with Gamma Frailty for Survival Data

Author

Listed:
  • Hanagal David D.

    (Department of Statistics, University of Pune, Pune-411007, India)

Abstract

A maximum likelihood estimation procedure is developed for a bivariate frailty regression model, in which dependence is generated by a gamma distribution. It is assumed that the random lifetimes follow a bivariate Weibull distribution proposed in Hanagal [Economic Quality Control 11: 193-200, 1996] and that censoring is independent of the two lifetimes. The proposed model may be applied for survival times in genetic epidemiology, survival times of dental implants of patients and survival times of twin births (both monozygotic and dizygotic), with genetic frailty behavior (which is unknown and random) of patients.

Suggested Citation

  • Hanagal David D., 2006. "Weibull Extension of Bivariate Exponential Regression Model with Gamma Frailty for Survival Data," Stochastics and Quality Control, De Gruyter, vol. 21(2), pages 261-270, January.
  • Handle: RePEc:bpj:ecqcon:v:21:y:2006:i:2:p:261-270:n:9
    DOI: 10.1515/EQC.2006.261
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/EQC.2006.261
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/EQC.2006.261?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Hanagal, 2006. "Bivariate Weibull regression model based on censored samples," Statistical Papers, Springer, vol. 47(1), pages 137-147, January.
    2. Lee, Larry, 1979. "Multivariate distributions having Weibull properties," Journal of Multivariate Analysis, Elsevier, vol. 9(2), pages 267-277, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Hanagal, 2009. "Weibull extension of bivariate exponential regression model with different frailty distributions," Statistical Papers, Springer, vol. 50(1), pages 29-49, January.
    2. Hanagal, David D., 2008. "Modelling heterogeneity for bivariate survival data by the log-normal distribution," Statistics & Probability Letters, Elsevier, vol. 78(9), pages 1101-1109, July.
    3. Hanagal, David D., 2010. "Modeling heterogeneity for bivariate survival data by the compound Poisson distribution with random scale," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1781-1790, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Hanagal, 2009. "Weibull extension of bivariate exponential regression model with different frailty distributions," Statistical Papers, Springer, vol. 50(1), pages 29-49, January.
    2. Hanagal David, 2005. "Weibull Extension of a Bivariate Exponential Regression Model," Stochastics and Quality Control, De Gruyter, vol. 20(2), pages 247-253, January.
    3. Friday Ikechukwu Agu & Joseph Thomas Eghwerido, 2021. "Agu-Eghwerido distribution, regression model and applications," Statistics in Transition New Series, Polish Statistical Association, vol. 22(4), pages 59-76, December.
    4. Lee, Hyunju & Cha, Ji Hwan, 2014. "On construction of general classes of bivariate distributions," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 151-159.
    5. Daniel Villanueva & Andrés Feijóo & José L. Pazos, 2013. "Multivariate Weibull Distribution for Wind Speed and Wind Power Behavior Assessment," Resources, MDPI, vol. 2(3), pages 1-15, September.
    6. Nadarajah Saralees & Kotz Samuel, 2006. "Determination of Software Reliability based on Multivariate Exponential, Lomax and Weibull Models," Monte Carlo Methods and Applications, De Gruyter, vol. 12(5), pages 447-459, November.
    7. Kundu, Debasis & Dey, Arabin Kumar, 2009. "Estimating the parameters of the Marshall-Olkin bivariate Weibull distribution by EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 956-965, February.
    8. Roy, Dilip & Mukherjee, S. P., 1998. "Multivariate Extensions of Univariate Life Distributions," Journal of Multivariate Analysis, Elsevier, vol. 67(1), pages 72-79, October.
    9. Feijóo, Andrés & Villanueva, Daniel & Pazos, José Luis & Sobolewski, Robert, 2011. "Simulation of correlated wind speeds: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2826-2832, August.
    10. Yeh, Hsiaw-Chan, 2009. "Multivariate semi-Weibull distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1634-1644, September.
    11. Wang, Antai & Oakes, David, 2008. "Some properties of the Kendall distribution in bivariate Archimedean copula models under censoring," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2578-2583, November.
    12. Nanami Taketomi & Kazuki Yamamoto & Christophe Chesneau & Takeshi Emura, 2022. "Parametric Distributions for Survival and Reliability Analyses, a Review and Historical Sketch," Mathematics, MDPI, vol. 10(20), pages 1-23, October.
    13. Hansjörg Albrecher & Mogens Bladt & Jorge Yslas, 2022. "Fitting inhomogeneous phase‐type distributions to data: the univariate and the multivariate case," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 44-77, March.
    14. Agu Friday Ikechukwu & Eghwerido Joseph Thomas, 2021. "Agu-Eghwerido distribution, regression model and applications," Statistics in Transition New Series, Polish Statistical Association, vol. 22(4), pages 59-76, December.
    15. Patra, Kaushik & Dey, Dipak K., 1999. "A multivariate mixture of Weibull distributions in reliability modeling," Statistics & Probability Letters, Elsevier, vol. 45(3), pages 225-235, November.
    16. Nandi, Swagata & Dewan, Isha, 2010. "An EM algorithm for estimating the parameters of bivariate Weibull distribution under random censoring," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1559-1569, June.
    17. Wenjing Yin & Sihai Dave Zhao & Feng Liang, 2022. "Bayesian penalized Buckley-James method for high dimensional bivariate censored regression models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(2), pages 282-318, April.
    18. Feijóo, Andrés & Villanueva, Daniel, 2016. "Assessing wind speed simulation methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 473-483.
    19. Weekes, S.M. & Tomlin, A.S., 2014. "Comparison between the bivariate Weibull probability approach and linear regression for assessment of the long-term wind energy resource using MCP," Renewable Energy, Elsevier, vol. 68(C), pages 529-539.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ecqcon:v:21:y:2006:i:2:p:261-270:n:9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.