IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v49y2022i1p44-77.html
   My bibliography  Save this article

Fitting inhomogeneous phase‐type distributions to data: the univariate and the multivariate case

Author

Listed:
  • Hansjörg Albrecher
  • Mogens Bladt
  • Jorge Yslas

Abstract

The class of inhomogeneous phase‐type distributions (IPH) was recently introduced in Albrecher & Bladt (2019) as an extension of the classical phase‐type (PH) distributions. Like PH distributions, the class of IPH is dense in the class of distributions on the positive halfline, but leads to more parsimonious models in the presence of heavy tails. In this paper we propose a fitting procedure for this class to given data. We furthermore consider an analogous extension of Kulkarni's multivariate PH class (Kulkarni, 1989) to the inhomogeneous framework and study parameter estimation for the resulting new and flexible class of multivariate distributions. As a by‐product, we amend a previously suggested fitting procedure for the homogeneous multivariate PH case and provide appropriate adaptations for censored data. The performance of the algorithms is illustrated in several numerical examples, both for simulated and real‐life insurance data.

Suggested Citation

  • Hansjörg Albrecher & Mogens Bladt & Jorge Yslas, 2022. "Fitting inhomogeneous phase‐type distributions to data: the univariate and the multivariate case," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 44-77, March.
  • Handle: RePEc:bla:scjsta:v:49:y:2022:i:1:p:44-77
    DOI: 10.1111/sjos.12505
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12505
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12505?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexander Herbertsson, 2011. "Modelling default contagion using multivariate phase-type distributions," Review of Derivatives Research, Springer, vol. 14(1), pages 1-36, April.
    2. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    3. Cai, Jun & Li, Haijun, 2005. "Multivariate risk model of phase type," Insurance: Mathematics and Economics, Elsevier, vol. 36(2), pages 137-152, April.
    4. Sancetta, Alessio & Satchell, Stephen, 2004. "The Bernstein Copula And Its Applications To Modeling And Approximations Of Multivariate Distributions," Econometric Theory, Cambridge University Press, vol. 20(3), pages 535-562, June.
    5. V. G. Kulkarni, 1989. "A New Class of Multivariate Phase Type Distributions," Operations Research, INFORMS, vol. 37(1), pages 151-158, February.
    6. Camarda, Carlo G., 2012. "MortalitySmooth: An R Package for Smoothing Poisson Counts with P-Splines," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 50(i01).
    7. Lee, Larry, 1979. "Multivariate distributions having Weibull properties," Journal of Multivariate Analysis, Elsevier, vol. 9(2), pages 267-277, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bladt, Martin & Yslas, Jorge, 2023. "Robust claim frequency modeling through phase-type mixture-of-experts regression," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 1-22.
    2. Jamaal Ahmad & Mogens Bladt, 2022. "Phase-type representations of stochastic interest rates with applications to life insurance," Papers 2207.11292, arXiv.org, revised Nov 2022.
    3. Cheung, Eric C.K. & Peralta, Oscar & Woo, Jae-Kyung, 2022. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 364-389.
    4. Albrecher, Hansjörg & Bladt, Martin & Bladt, Mogens & Yslas, Jorge, 2022. "Mortality modeling and regression with matrix distributions," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 68-87.
    5. Albrecher Hansjörg & Bladt Martin & Müller Alaric J. A., 2023. "Joint lifetime modeling with matrix distributions," Dependence Modeling, De Gruyter, vol. 11(1), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi-Ming He & Jiandong Ren, 2016. "Analysis of a Multivariate Claim Process," Methodology and Computing in Applied Probability, Springer, vol. 18(1), pages 257-273, March.
    2. Ren Jiandong & Zitikis Ricardas, 2017. "CMPH: a multivariate phase-type aggregate loss distribution," Dependence Modeling, De Gruyter, vol. 5(1), pages 304-315, December.
    3. Surya, Budhi Arta, 2022. "Conditional multivariate distributions of phase-type for a finite mixture of Markov jump processes given observations of sample path," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
    4. Bo Friis Nielsen, 2022. "Characterisation of multivariate phase type distributions," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 229-231, April.
    5. Cheung, Eric C.K. & Peralta, Oscar & Woo, Jae-Kyung, 2022. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 364-389.
    6. Hofert, Marius & Prasad, Avinash & Zhu, Mu, 2022. "Multivariate time-series modeling with generative neural networks," Econometrics and Statistics, Elsevier, vol. 23(C), pages 147-164.
    7. Badila, E.S. & Boxma, O.J. & Resing, J.A.C., 2015. "Two parallel insurance lines with simultaneous arrivals and risks correlated with inter-arrival times," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 48-61.
    8. Woo, Jae-Kyung, 2016. "On multivariate discounted compound renewal sums with time-dependent claims in the presence of reporting/payment delays," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 354-363.
    9. Eric C. K. Cheung & Oscar Peralta & Jae-Kyung Woo, 2021. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Papers 2201.11122, arXiv.org.
    10. Kojadinovic, Ivan & Stemikovskaya, Kristina, 2019. "Subsampling (weighted smooth) empirical copula processes," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 704-723.
    11. Berdel, Jasmin & Hipp, Christian, 2011. "Convolutions of multivariate phase-type distributions," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 374-377, May.
    12. Ackerer Damien & Vatter Thibault, 2017. "Dependent defaults and losses with factor copula models," Dependence Modeling, De Gruyter, vol. 5(1), pages 375-399, December.
    13. Qi-Ming He & Jiandong Ren, 2016. "Parameter Estimation of Discrete Multivariate Phase-Type Distributions," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 629-651, September.
    14. Cai, Jun & Li, Haijun, 2007. "Dependence properties and bounds for ruin probabilities in multivariate compound risk models," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 757-773, April.
    15. Abduraimova, Kumushoy, 2022. "Contagion and tail risk in complex financial networks," Journal of Banking & Finance, Elsevier, vol. 143(C).
    16. Masahiko Egami & Rusudan Kevkhishvili, 2020. "Time reversal and last passage time of diffusions with applications to credit risk management," Finance and Stochastics, Springer, vol. 24(3), pages 795-825, July.
    17. Avanzi, Benjamin & Taylor, Greg & Wong, Bernard & Yang, Xinda, 2021. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 9-24.
    18. Pfeifer Dietmar & Mändle Andreas & Ragulina Olena, 2017. "New copulas based on general partitions-of-unity and their applications to risk management (part II)," Dependence Modeling, De Gruyter, vol. 5(1), pages 246-255, October.
    19. Diba Daraei & Kristina Sendova, 2024. "Determining Safe Withdrawal Rates for Post-Retirement via a Ruin-Theory Approach," Risks, MDPI, vol. 12(4), pages 1-21, April.
    20. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:49:y:2022:i:1:p:44-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.