IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v67y1998i1p72-79.html
   My bibliography  Save this article

Multivariate Extensions of Univariate Life Distributions

Author

Listed:
  • Roy, Dilip
  • Mukherjee, S. P.

Abstract

A general approach for the development of multivariate survival models, based on a set of given marginal survivals, is presented. Preservation of IFR and IFRA properties and the nature of dependence among the variables are examined, and a recursive relation is suggested to obtain the resultant density function. In particular, an absolutely continuous Weibull distribution is derived and a few of its properties are studied.

Suggested Citation

  • Roy, Dilip & Mukherjee, S. P., 1998. "Multivariate Extensions of Univariate Life Distributions," Journal of Multivariate Analysis, Elsevier, vol. 67(1), pages 72-79, October.
  • Handle: RePEc:eee:jmvana:v:67:y:1998:i:1:p:72-79
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(98)91754-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elandt-Johnson, Regina C., 1978. "Some properties of bivariate Gumbel Type A distributions with proportional hazard rates," Journal of Multivariate Analysis, Elsevier, vol. 8(2), pages 244-254, June.
    2. Johnson, N. L. & Kotz, Samuel, 1975. "A vector multivariate hazard rate," Journal of Multivariate Analysis, Elsevier, vol. 5(1), pages 53-66, March.
    3. Shanbhag, D. N. & Kotz, S., 1987. "Some new approaches to multivariate probability distributions," Journal of Multivariate Analysis, Elsevier, vol. 22(2), pages 189-211, August.
    4. Lee, Larry, 1979. "Multivariate distributions having Weibull properties," Journal of Multivariate Analysis, Elsevier, vol. 9(2), pages 267-277, June.
    5. Shaked, Moshe, 1982. "A general theory of some positive dependence notions," Journal of Multivariate Analysis, Elsevier, vol. 12(2), pages 199-218, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jung, M. & Bai, D.S., 2007. "Analysis of field data under two-dimensional warranty," Reliability Engineering and System Safety, Elsevier, vol. 92(2), pages 135-143.
    2. Dilip Roy, 2004. "Bivariate models from univariate life distributions: A characterization cum modeling approach," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(5), pages 741-754, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dilip Roy, 2004. "Bivariate models from univariate life distributions: A characterization cum modeling approach," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(5), pages 741-754, August.
    2. Navarro, Jorge, 2008. "Characterizations using the bivariate failure rate function," Statistics & Probability Letters, Elsevier, vol. 78(12), pages 1349-1354, September.
    3. A. James & N. Chandra & Nicy Sebastian, 2023. "Stress-strength reliability estimation for bivariate copula function with rayleigh marginals," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 196-215, March.
    4. Navarro, Jorge & Sarabia, José María, 2013. "Reliability properties of bivariate conditional proportional hazard rate models," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 116-127.
    5. Kotz, Samuel & Navarro, Jorge & Ruiz, Jose M., 2007. "Characterizations of Arnold and Strauss' and related bivariate exponential models," Journal of Multivariate Analysis, Elsevier, vol. 98(7), pages 1494-1507, August.
    6. Colangelo Antonio, 2005. "Multivariate hazard orderings of discrete random vectors," Economics and Quantitative Methods qf05010, Department of Economics, University of Insubria.
    7. M. Shafaei Noughabi & M. Kayid, 2019. "Bivariate quantile residual life: a characterization theorem and statistical properties," Statistical Papers, Springer, vol. 60(6), pages 2001-2012, December.
    8. Marcello Basili & Paulo Casaca & Alain Chateauneuf & Maurizio Franzini, 2017. "Multidimensional Pigou–Dalton transfers and social evaluation functions," Theory and Decision, Springer, vol. 83(4), pages 573-590, December.
    9. Lee, Hyunju & Cha, Ji Hwan, 2014. "On construction of general classes of bivariate distributions," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 151-159.
    10. Sanders, Lisanne & Melenberg, Bertrand, 2016. "Estimating the joint survival probabilities of married individuals," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 88-106.
    11. Daniel Villanueva & Andrés Feijóo & José L. Pazos, 2013. "Multivariate Weibull Distribution for Wind Speed and Wind Power Behavior Assessment," Resources, MDPI, vol. 2(3), pages 1-15, September.
    12. P. Sankaran & K. Jayakumar, 2008. "On proportional odds models," Statistical Papers, Springer, vol. 49(4), pages 779-789, October.
    13. Nazarizadeh, Farzaneh & Alemtabriz, Akbar & Zandieh, Mostafa & Raad, Abbas, 2022. "An analytical model for reliability assessment of the rail system considering dependent failures (case study of Iranian railway)," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    14. S.M. Sunoj & N. Unnikrishnan Nair, 1999. "Bivariate distributions with weighted marginals and reliablity modelling," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3-4), pages 118-126.
    15. Kundu, Debasis & Franco, Manuel & Vivo, Juana-Maria, 2014. "Multivariate distributions with proportional reversed hazard marginals," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 98-112.
    16. Belzunce, Félix & Mercader, José A. & Ruiz, José M., 2003. "Multivariate aging properties of epoch times of nonhomogeneous processes," Journal of Multivariate Analysis, Elsevier, vol. 84(2), pages 335-350, February.
    17. Huang, Wen-Tao & Xu, Bing, 2002. "Some maximal inequalities and complete convergences of negatively associated random sequences," Statistics & Probability Letters, Elsevier, vol. 57(2), pages 183-191, April.
    18. Indranil Ghosh & Osborne Banks, 2021. "A Study of Bivariate Generalized Pareto Distribution and its Dependence Structure Among Model Parameters," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 575-604, November.
    19. Enrique de Amo & María del Rosario Rodríguez-Griñolo & Manuel Úbeda-Flores, 2024. "Directional Dependence Orders of Random Vectors," Mathematics, MDPI, vol. 12(3), pages 1-14, January.
    20. Feijóo, Andrés & Villanueva, Daniel & Pazos, José Luis & Sobolewski, Robert, 2011. "Simulation of correlated wind speeds: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2826-2832, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:67:y:1998:i:1:p:72-79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.