IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v78y2024i1p244-260.html
   My bibliography  Save this article

An efficient automatic clustering algorithm for probability density functions and its applications in surface material classification

Author

Listed:
  • Thao Nguyen‐Trang
  • Tai Vo‐Van
  • Ha Che‐Ngoc

Abstract

Clustering is a technique used to partition a dataset into groups of similar elements. In addition to traditional clustering methods, clustering for probability density functions (CDF) has been studied to capture data uncertainty. In CDF, automatic clustering is a clever technique that can determine the number of clusters automatically. However, current automatic clustering algorithms update the new probability density function (pdf) fi(t)$$ {f}_i(t) $$ based on the weighted mean of all previous pdfs fj(t−1),j=1,2,…,N$$ {f}_j\left(t-1\right),j=1,2,\dots, N $$, resulting in slow convergence. This paper proposes an efficient automatic clustering algorithm for pdfs. In the proposed approach, the update of fi(t)$$ {f}_i(t) $$ is based on the weighted mean of f1(t),f2(t),…,fi−1(t),fi(t−1),fi+1(t−1),…,fN(t−1)$$ \left\{{f}_1(t),{f}_2(t),\dots, {f}_{i-1}(t),{f}_i\left(t-1\right),{f}_{i+1}\left(t-1\right),\dots, {f}_N\left(t-1\right)\right\} $$, where N$$ N $$ is the number of pdfs and i=1,2,…,N$$ i=1,2,\dots, N $$. This technique allows for the incorporation of recently updated pdfs, leading to faster convergence. This paper also pioneers the applications of certain CDF algorithms in the field of surface image recognition. The numerical examples demonstrate that the proposed method can result in a rapid convergence at some early iterations. It also outperforms other state‐of‐the‐art automatic clustering methods in terms of the Adjusted Rand Index and the Normalized Mutual Information. Additionally, the proposed algorithm proves to be competitive when clustering material images contaminated by noise. These results highlight the applicability of the proposed method in the problem of surface image recognition.

Suggested Citation

  • Thao Nguyen‐Trang & Tai Vo‐Van & Ha Che‐Ngoc, 2024. "An efficient automatic clustering algorithm for probability density functions and its applications in surface material classification," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 78(1), pages 244-260, February.
  • Handle: RePEc:bla:stanee:v:78:y:2024:i:1:p:244-260
    DOI: 10.1111/stan.12315
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/stan.12315
    Download Restriction: no

    File URL: https://libkey.io/10.1111/stan.12315?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wen-Liang Hung & Jenn-Hwai Yang, 2015. "Automatic clustering algorithm for fuzzy data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(7), pages 1503-1518, July.
    2. Yingqiu Zhu & Qiong Deng & Danyang Huang & Bingyi Jing & Bo Zhang, 2021. "Clustering based on Kolmogorov–Smirnov statistic with application to bank card transaction data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 558-578, June.
    3. Hien D. Nguyen & Geoffrey J. McLachlan & Jeremy F. P. Ullmann & Andrew L. Janke, 2016. "Spatial clustering of time series via mixture of autoregressions models and Markov random fields," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(4), pages 414-439, November.
    4. Tai VoVan & Thao NguyenTrang, 2018. "Similar coefficient for cluster of probability density functions," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(8), pages 1792-1811, April.
    5. Rosaria Simone & Gerhard Tutz, 2018. "Modelling uncertainty and response styles in ordinal data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 224-245, August.
    6. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    7. Thao Nguyentrang & Tai Vovan, 2017. "Fuzzy clustering of probability density functions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(4), pages 583-601, March.
    8. Tai VoVan & Thao Nguyen Trang, 2018. "Similar Coefficient of Cluster for Discrete Elements," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 19-36, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tai Vovan & Dinh Phamtoan & Le Hoang Tuan & Thao Nguyentrang, 2021. "An automatic clustering for interval data using the genetic algorithm," Annals of Operations Research, Springer, vol. 303(1), pages 359-380, August.
    2. Tai VoVan & Thao Nguyen Trang, 2018. "Similar Coefficient of Cluster for Discrete Elements," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 19-36, May.
    3. Nazila Zarghi, 2021. "Evidence-Based Social Sciences: A New Emerging Field," European Journal of Social Sciences Education and Research Articles, Revistia Research and Publishing, vol. 8, January -.
    4. Yunpeng Zhao & Qing Pan & Chengan Du, 2019. "Logistic regression augmented community detection for network data with application in identifying autism‐related gene pathways," Biometrics, The International Biometric Society, vol. 75(1), pages 222-234, March.
    5. Wu, Han-Ming & Tien, Yin-Jing & Chen, Chun-houh, 2010. "GAP: A graphical environment for matrix visualization and cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 767-778, March.
    6. José E. Chacón, 2021. "Explicit Agreement Extremes for a 2 × 2 Table with Given Marginals," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 257-263, July.
    7. F. Marta L. Di Lascio & Andrea Menapace & Roberta Pappadà, 2024. "A spatially‐weighted AMH copula‐based dissimilarity measure for clustering variables: An application to urban thermal efficiency," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
    8. Yifan Zhu & Chongzhi Di & Ying Qing Chen, 2019. "Clustering Functional Data with Application to Electronic Medication Adherence Monitoring in HIV Prevention Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(2), pages 238-261, July.
    9. Irene Vrbik & Paul McNicholas, 2015. "Fractionally-Supervised Classification," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 359-381, October.
    10. Maurizio Vichi & Carlo Cavicchia & Patrick J. F. Groenen, 2022. "Hierarchical Means Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 553-577, November.
    11. Batool, Fatima & Hennig, Christian, 2021. "Clustering with the Average Silhouette Width," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    12. Patrick D. Shay & Stephen S. Farnsworth Mick, 2017. "Clustered and distinct: a taxonomy of local multihospital systems," Health Care Management Science, Springer, vol. 20(3), pages 303-315, September.
    13. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    14. Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
    15. Wan-Lun Wang, 2019. "Mixture of multivariate t nonlinear mixed models for multiple longitudinal data with heterogeneity and missing values," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 196-222, March.
    16. Matthijs Warrens, 2010. "Inequalities Between Kappa and Kappa-Like Statistics for k×k Tables," Psychometrika, Springer;The Psychometric Society, vol. 75(1), pages 176-185, March.
    17. Redivo, Edoardo & Nguyen, Hien D. & Gupta, Mayetri, 2020. "Bayesian clustering of skewed and multimodal data using geometric skewed normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    18. Jerzy Korzeniewski, 2016. "New Method Of Variable Selection For Binary Data Cluster Analysis," Statistics in Transition New Series, Polish Statistical Association, vol. 17(2), pages 295-304, June.
    19. Zhu, Xuwen & Melnykov, Volodymyr, 2018. "Manly transformation in finite mixture modeling," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 190-208.
    20. Amiri, Babak & Karimianghadim, Ramin, 2024. "A novel text clustering model based on topic modelling and social network analysis," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:78:y:2024:i:1:p:244-260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.