IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v72y2018i3p210-223.html
   My bibliography  Save this article

Simple ways to interpret effects in modeling ordinal categorical data

Author

Listed:
  • Alan Agresti
  • Claudia Tarantola

Abstract

We survey effect measures for models for ordinal categorical data that can be simpler to interpret than the model parameters. For describing the effect of an explanatory variable while adjusting for other explanatory variables, we present probability‐based measures, including a measure of relative size and partial effect measures based on instantaneous rates of change. We also discuss summary measures of predictive power that are analogs of R‐squared and multiple correlation for quantitative response variables. We illustrate the measures for an example and provide R code for implementing them.

Suggested Citation

  • Alan Agresti & Claudia Tarantola, 2018. "Simple ways to interpret effects in modeling ordinal categorical data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 210-223, August.
  • Handle: RePEc:bla:stanee:v:72:y:2018:i:3:p:210-223
    DOI: 10.1111/stan.12130
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/stan.12130
    Download Restriction: no

    File URL: https://libkey.io/10.1111/stan.12130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. A. Anderson & P. R. Philips, 1981. "Regression, Discrimination and Measurement Models for Ordered Categorical Variables," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 30(1), pages 22-31, March.
    2. Alan Agresti & Maria Kateri, 2017. "Ordinal probability effect measures for group comparisons in multinomial cumulative link models," Biometrics, The International Biometric Society, vol. 73(1), pages 214-219, March.
    3. Olivier Thas & Jan De Neve & Lieven Clement & Jean-Pierre Ottoy, 2012. "Probabilistic index models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(4), pages 623-671, September.
    4. Simon N. Wood & Natalya Pya & Benjamin Säfken, 2016. "Smoothing Parameter and Model Selection for General Smooth Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1548-1563, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    2. Maria Iannario & Anna Clara Monti, 2022. "Modelling consumer perceptions of service quality for urban public transport systems using statistical models for ordinal data," METRON, Springer;Sapienza Università di Roma, vol. 80(1), pages 61-76, April.
    3. George A. Matysiak & Krzysztof Olszewski, 2019. "A panel analysis of Polish regional cities: residential price convergence in the primary market," NBP Working Papers 316, Narodowy Bank Polski.
    4. Vivian Yi-Ju Chen & Kiwoong Park & Feinuo Sun & Tse-Chuan Yang, 2022. "Assessing COVID-19 risk with temporal indices and geographically weighted ordinal logistic regression in US counties," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-16, April.
    5. Alan Agresti & Maria Kateri, 2019. "The class of CUB models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 445-449, September.
    6. Kauky, Monica Sebastian, 2023. "Mothers Education and Children’s Nutrition Outcomes in Tanzania," African Journal of Economic Review, African Journal of Economic Review, vol. 11(4), September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    2. Jean‐Sauveur Ay, 2021. "The Informational Content of Geographical Indications," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(2), pages 523-542, March.
    3. Georgios Gioldasis & Antonio Musolesi & Michel Simioni, 2020. "Model uncertainty, nonlinearities and out-of-sample comparison: evidence from international technology diffusion," Working Papers hal-02790523, HAL.
    4. Ay, Jean-Sauveur & Le Gallo, Julie, 2021. "The Signaling Values of Nested Wine Names," Working Papers 321851, American Association of Wine Economists.
    5. Jiannan Lu & Peng Ding & Tirthankar Dasgupta, 2018. "Treatment Effects on Ordinal Outcomes: Causal Estimands and Sharp Bounds," Journal of Educational and Behavioral Statistics, , vol. 43(5), pages 540-567, October.
    6. E. Zanini & E. Eastoe & M. J. Jones & D. Randell & P. Jonathan, 2020. "Flexible covariate representations for extremes," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.
    7. Benjamin Säfken & Thomas Kneib, 2020. "Conditional covariance penalties for mixed models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 990-1010, September.
    8. Khamma, Thulasi Ram & Zhang, Yuming & Guerrier, Stéphane & Boubekri, Mohamed, 2020. "Generalized additive models: An efficient method for short-term energy prediction in office buildings," Energy, Elsevier, vol. 213(C).
    9. Massimiliano Mazzanti & Antonio Musolesi, 2020. "Modeling Green Knowledge Production and Environmental Policies with Semiparametric Panel Data Regression models," SEEDS Working Papers 1420, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Sep 2020.
    10. Andrew Leroux & Junrui Di & Ekaterina Smirnova & Elizabeth J Mcguffey & Quy Cao & Elham Bayatmokhtari & Lucia Tabacu & Vadim Zipunnikov & Jacek K Urbanek & Ciprian Crainiceanu, 2019. "Organizing and Analyzing the Activity Data in NHANES," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(2), pages 262-287, July.
    11. Yong Liu & Alan P. Ker, 2021. "Simultaneous borrowing of information across space and time for pricing insurance contracts: An application to rating crop insurance policies," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(1), pages 231-257, March.
    12. Stefano Cabras & J. D. Tena, 2023. "Implicit institutional incentives and individual decisions: Causal inference with deep learning models," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(6), pages 3739-3754, September.
    13. Hervé Cardot & Antonio Musolesi, 2018. "Modeling temporal treatment effects with zero inflated semi-parametric regression models: the case of local development policies in France," SEEDS Working Papers 0718, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Mar 2018.
    14. Gioldasis, Georgios & Musolesi, Antonio & Simioni, Michel, 2023. "Interactive R&D spillovers: An estimation strategy based on forecasting-driven model selection," International Journal of Forecasting, Elsevier, vol. 39(1), pages 144-169.
    15. Sun, Tianyu & Chand, Satish & Sharpe, Keiran, 2018. "Effect of aging on housing prices: evidence from a panel data," MPRA Paper 94418, University Library of Munich, Germany, revised 01 Mar 2019.
    16. Eleni Matechou & Ivy Liu & Daniel Fernández & Miguel Farias & Bergljot Gjelsvik, 2016. "Biclustering Models for Two-Mode Ordinal Data," Psychometrika, Springer;The Psychometric Society, vol. 81(3), pages 611-624, September.
    17. Michael S. O’Donnell & Daniel J. Manier, 2022. "Spatial Estimates of Soil Moisture for Understanding Ecological Potential and Risk: A Case Study for Arid and Semi-Arid Ecosystems," Land, MDPI, vol. 11(10), pages 1-37, October.
    18. Dennis Dobler & Markus Pauly, 2018. "Bootstrap- and permutation-based inference for the Mann–Whitney effect for right-censored and tied data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 639-658, September.
    19. Haiqing Hu & Pandu R. Tadikamalla, 2020. "When to launch a sales promotion for online fashion products? An empirical study," Electronic Commerce Research, Springer, vol. 20(4), pages 737-756, December.
    20. Kneib, Thomas & Silbersdorff, Alexander & Säfken, Benjamin, 2023. "Rage Against the Mean – A Review of Distributional Regression Approaches," Econometrics and Statistics, Elsevier, vol. 26(C), pages 99-123.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:72:y:2018:i:3:p:210-223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.