IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v72y2018i3p201-209.html
   My bibliography  Save this article

The truth about the effective dimension

Author

Listed:
  • Paul H. C. Eilers

Abstract

The effective dimension of a model is a useful measure of its complexity. In linear models, the trace of the so‐called hat matrix is a convenient choice. It has strong links to variance estimation in mixed models, and it suggests straightforward partial effective dimensions for additive model components. Efron (2004) casts doubt on the trace of the hat matrix and advocates an alternative definition of the effective dimension, based on a covariance formula. Unfortunately, he uses the robust lowess smoother, which is strongly nonlinear. This blurs the issue and invalidates his conclusions. I show that the problems disappear if a linear smoother is being used. The computation of the trace of the hat matrix is much more efficient than using the covariance formula, which needs bootstrapping.

Suggested Citation

  • Paul H. C. Eilers, 2018. "The truth about the effective dimension," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 201-209, August.
  • Handle: RePEc:bla:stanee:v:72:y:2018:i:3:p:201-209
    DOI: 10.1111/stan.12131
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/stan.12131
    Download Restriction: no

    File URL: https://libkey.io/10.1111/stan.12131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. P. Wand, 2003. "Smoothing and mixed models," Computational Statistics, Springer, vol. 18(2), pages 223-249, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Dae-Jin & Durbán, María, 2009. "P-spline anova-type interaction models for spatio-temporal smoothing," DES - Working Papers. Statistics and Econometrics. WS ws093312, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Woojoo Lee & Hans‐Peter Piepho & Youngjo Lee, 2021. "Resolving the ambiguity of random‐effects models with singular precision matrix," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(4), pages 482-499, November.
    3. Michael Wegener & Göran Kauermann, 2017. "Forecasting in nonlinear univariate time series using penalized splines," Statistical Papers, Springer, vol. 58(3), pages 557-576, September.
    4. Tingting Zhou & Michael R. Elliott & Roderick J. A. Little, 2021. "Robust Causal Estimation from Observational Studies Using Penalized Spline of Propensity Score for Treatment Comparison," Stats, MDPI, vol. 4(2), pages 1-21, June.
    5. Strasak, Alexander M. & Umlauf, Nikolaus & Pfeiffer, Ruth M. & Lang, Stefan, 2011. "Comparing penalized splines and fractional polynomials for flexible modelling of the effects of continuous predictor variables," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1540-1551, April.
    6. Skaug, Hans J. & Fournier, David A., 2006. "Automatic approximation of the marginal likelihood in non-Gaussian hierarchical models," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 699-709, November.
    7. Tatyana Krivobokova & Göran Kauermann & Theofanis Archontakis, 2006. "Estimating the term structure of interest rates using penalized splines," Statistical Papers, Springer, vol. 47(3), pages 443-459, June.
    8. Torben Kuhlenkasper & Max Friedrich Steinhardt, 2011. "Unemployment Duration in Germany – A comprehensive study with dynamic hazard models and P-Splines," Norface Discussion Paper Series 2011018, Norface Research Programme on Migration, Department of Economics, University College London.
    9. Gerhard Tutz, 2003. "Generalized Semiparametrically Structured Ordinal Models," Biometrics, The International Biometric Society, vol. 59(2), pages 263-273, June.
    10. Tingting Zhou & Michael R. Elliott & Roderick J. A. Little, 2022. "Addressing Disparities in the Propensity Score Distributions for Treatment Comparisons from Observational Studies," Stats, MDPI, vol. 5(4), pages 1-17, December.
    11. Lee, Wang-Sheng, 2014. "Is the BMI a Relic of the Past?," IZA Discussion Papers 8637, Institute of Labor Economics (IZA).
    12. Militino, A.F. & Goicoa, T. & Ugarte, M.D., 2012. "Estimating the percentage of food expenditure in small areas using bias-corrected P-spline based estimators," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2934-2948.
    13. Kuhlenkasper, Torben & Steinhardt, Max Friedrich, 2017. "Who leaves and when? Selective outmigration of immigrants from Germany," Economic Systems, Elsevier, vol. 41(4), pages 610-621.
    14. Basile, Roberto & Durbán, María & Mínguez, Román & María Montero, Jose & Mur, Jesús, 2014. "Modeling regional economic dynamics: Spatial dependence, spatial heterogeneity and nonlinearities," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 229-245.
    15. Lauren Hund & Jarvis T. Chen & Nancy Krieger & Brent A. Coull, 2012. "A Geostatistical Approach to Large-Scale Disease Mapping with Temporal Misalignment," Biometrics, The International Biometric Society, vol. 68(3), pages 849-858, September.
    16. Luts, Jan & Ormerod, John T., 2014. "Mean field variational Bayesian inference for support vector machine classification," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 163-176.
    17. María Xosé Rodríguez‐Álvarez & María Durbán & Paul H.C. Eilers & Dae‐Jin Lee & Francisco Gonzalez, 2023. "Multidimensional adaptive P‐splines with application to neurons' activity studies," Biometrics, The International Biometric Society, vol. 79(3), pages 1972-1985, September.
    18. Mestekemper, Thomas & Kauermann, Göran & Smith, Michael S., 2013. "A comparison of periodic autoregressive and dynamic factor models in intraday energy demand forecasting," International Journal of Forecasting, Elsevier, vol. 29(1), pages 1-12.
    19. Christian Schellhase & Göran Kauermann, 2012. "Density estimation and comparison with a penalized mixture approach," Computational Statistics, Springer, vol. 27(4), pages 757-777, December.
    20. Shao, Shuai & Kauermann, Göran & Smith, Michael Stanley, 2020. "Whether, when and which: Modelling advanced seat reservations by airline passengers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 490-514.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:72:y:2018:i:3:p:201-209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.