IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i21p2820-d673380.html
   My bibliography  Save this article

A Compound Poisson Perspective of Ewens–Pitman Sampling Model

Author

Listed:
  • Emanuele Dolera

    (Department of Mathematics, University of Pavia, Via Adolfo Ferrata 5, 27100 Pavia, Italy
    Collegio Carlo Alberto, Piazza V. Arbarello 8, 10122 Torino, Italy
    IMATI-CNR “Enrico Magenes”, 27100 Pavia, Italy)

  • Stefano Favaro

    (Collegio Carlo Alberto, Piazza V. Arbarello 8, 10122 Torino, Italy
    IMATI-CNR “Enrico Magenes”, 27100 Pavia, Italy
    Department of Economic and Social Sciences, Mathematics and Statistics, University of Torino, Corso Unione Sovietica 218/bis, 10134 Torino, Italy)

Abstract

The Ewens–Pitman sampling model (EP-SM) is a distribution for random partitions of the set { 1 , … , n } , with n ∈ N , which is indexed by real parameters α and θ such that either α ∈ [ 0 , 1 ) and θ > − α , or α < 0 and θ = − m α for some m ∈ N . For α = 0 , the EP-SM is reduced to the Ewens sampling model (E-SM), which admits a well-known compound Poisson perspective in terms of the log-series compound Poisson sampling model (LS-CPSM). In this paper, we consider a generalisation of the LS-CPSM, referred to as the negative Binomial compound Poisson sampling model (NB-CPSM), and we show that it leads to an extension of the compound Poisson perspective of the E-SM to the more general EP-SM for either α ∈ ( 0 , 1 ) , or α < 0 . The interplay between the NB-CPSM and the EP-SM is then applied to the study of the large n asymptotic behaviour of the number of blocks in the corresponding random partitions—leading to a new proof of Pitman’s α diversity. We discuss the proposed results and conjecture that analogous compound Poisson representations may hold for the class of α -stable Poisson–Kingman sampling models—of which the EP-SM is a noteworthy special case.

Suggested Citation

  • Emanuele Dolera & Stefano Favaro, 2021. "A Compound Poisson Perspective of Ewens–Pitman Sampling Model," Mathematics, MDPI, vol. 9(21), pages 1-12, November.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:21:p:2820-:d:673380
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/21/2820/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/21/2820/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stefano Favaro & Antonio Lijoi & Ramsés H. Mena & Igor Prünster, 2009. "Bayesian nonparametric inference for species variety with a two parameter Poisson-Dirichlet process prior," Carlo Alberto Notebooks 123, Collegio Carlo Alberto.
    2. Stefano Favaro & Antonio Lijoi & Ramsés H. Mena & Igor Prünster, 2009. "Bayesian non‐parametric inference for species variety with a two‐parameter Poisson–Dirichlet process prior," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 993-1008, November.
    3. Charalambos A. Charalambides, 2007. "Distributions of Random Partitions and Their Applications," Methodology and Computing in Applied Probability, Springer, vol. 9(2), pages 163-193, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giulia Cereda, 2017. "Impact of Model Choice on LR Assessment in Case of Rare Haplotype Match (Frequentist Approach)," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 230-248, March.
    2. repec:dau:papers:123456789/13437 is not listed on IDEAS
    3. Weixuan Zhu & Fabrizio Leisen, 2015. "A multivariate extension of a vector of two-parameter Poisson-Dirichlet processes," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(1), pages 89-105, March.
    4. Stefano Favaro & Shui Feng & Fuqing Gao, 2018. "Moderate Deviations for Ewens-Pitman Sampling Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 330-341, August.
    5. Sonia Petrone & Stefano Rizzelli & Judith Rousseau & Catia Scricciolo, 2014. "Empirical Bayes methods in classical and Bayesian inference," METRON, Springer;Sapienza Università di Roma, vol. 72(2), pages 201-215, August.
    6. Emanuele Dolera, 2022. "Asymptotic Efficiency of Point Estimators in Bayesian Predictive Inference," Mathematics, MDPI, vol. 10(7), pages 1-27, April.
    7. Stefano Favaro & Bernardo Nipoti, 2014. "Discussion of “On simulation and properties of the stable law” by L. Devroye and L. James," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(3), pages 365-369, August.
    8. Lawless Caroline & Arbel Julyan, 2019. "A simple proof of Pitman–Yor’s Chinese restaurant process from its stick-breaking representation," Dependence Modeling, De Gruyter, vol. 7(1), pages 45-52, March.
    9. Julyan Arbel & Stefano Favaro, 2021. "Approximating Predictive Probabilities of Gibbs-Type Priors," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 496-519, February.
    10. Pierpaolo De Blasi & Stefano Favaro & Antonio Lijoi & Ramsés H. Mena & Igor Prünster & Mattteo Ruggiero, 2013. "Are Gibbs-type priors the most natural generalization of the Dirichlet process?," DEM Working Papers Series 054, University of Pavia, Department of Economics and Management.
    11. Stefano Favaro & Antonio Lijoi & Igor Prunster, 2011. "Asymptotics for a Bayesian nonparametric estimator of species richness," Quaderni di Dipartimento 144, University of Pavia, Department of Economics and Quantitative Methods.
    12. Cesari, Oriana & Favaro, Stefano & Nipoti, Bernardo, 2014. "Posterior analysis of rare variants in Gibbs-type species sampling models," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 79-98.
    13. Masaaki Sibuya, 2014. "Prediction in Ewens–Pitman sampling formula and random samples from number partitions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(5), pages 833-864, October.
    14. Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "A New Estimator of the Discovery Probability," Biometrics, The International Biometric Society, vol. 68(4), pages 1188-1196, December.
    15. Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "A new estimator of the discovery probability," DEM Working Papers Series 007, University of Pavia, Department of Economics and Management.
    16. Giulia Cereda & Fabio Corradi & Cecilia Viscardi, 2023. "Learning the two parameters of the Poisson–Dirichlet distribution with a forensic application," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(1), pages 120-141, March.
    17. Nobuaki Hoshino, 2012. "Random partitioning over a sparse contingency table," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 457-474, June.
    18. Giulia Cereda, 2017. "Bayesian approach to LR assessment in case of rare type match," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 71(2), pages 141-164, May.
    19. Zhang, Junyi & Dassios, Angelos, 2023. "Truncated two-parameter Poisson-Dirichlet approximation for Pitman-Yor process hierarchical models," LSE Research Online Documents on Economics 120294, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:21:p:2820-:d:673380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.