IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v113y2018i523p1210-1218.html
   My bibliography  Save this article

On the Use of Reproducing Kernel Hilbert Spaces in Functional Classification

Author

Listed:
  • José R. Berrendero
  • Antonio Cuevas
  • José L. Torrecilla

Abstract

The Hájek–Feldman dichotomy establishes that two Gaussian measures are either mutually absolutely continuous with respect to each other (and hence there is a Radon–Nikodym density for each measure with respect to the other one) or mutually singular. Unlike the case of finite-dimensional Gaussian measures, there are nontrivial examples of both situations when dealing with Gaussian stochastic processes. This article provides: (a) Explicit expressions for the optimal (Bayes) rule and the minimal classification error probability in several relevant problems of supervised binary classification of mutually absolutely continuous Gaussian processes. The approach relies on some classical results in the theory of reproducing kernel Hilbert spaces (RKHS). (b) An interpretation, in terms of mutual singularity, for the so-called “near perfect classification” phenomenon. We show that the asymptotically optimal rule proposed by these authors can be identified with the sequence of optimal rules for an approximating sequence of classification problems in the absolutely continuous case. (c) As an application, we discuss a natural variable selection method, which essentially consists of taking the original functional data X(t), t ∈ [0, 1] to a d-dimensional marginal (X(t1), …, X(td)), which is chosen to minimize the classification error of the corresponding Fisher’s linear rule. We give precise conditions under which this discrimination method achieves the minimal classification error of the original functional problem. Supplementary materials for this article are available online.

Suggested Citation

  • José R. Berrendero & Antonio Cuevas & José L. Torrecilla, 2018. "On the Use of Reproducing Kernel Hilbert Spaces in Functional Classification," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1210-1218, July.
  • Handle: RePEc:taf:jnlasa:v:113:y:2018:i:523:p:1210-1218
    DOI: 10.1080/01621459.2017.1320287
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2017.1320287
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2017.1320287?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José R. Berrendero & Beatriz Bueno-Larraz & Antonio Cuevas, 2023. "On functional logistic regression: some conceptual issues," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 321-349, March.
    2. Yao, Binhong & Li, Peixing, 2023. "Covariance estimation error of incomplete functional data under RKHS framework," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    3. Justin Petrovich & Matthew Reimherr & Carrie Daymont, 2022. "Highly irregular functional generalized linear regression with electronic health records," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 806-833, August.
    4. S. Barahona & P. Centella & X. Gual-Arnau & M. V. Ibáñez & A. Simó, 2020. "Supervised classification of geometrical objects by integrating currents and functional data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 637-660, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:113:y:2018:i:523:p:1210-1218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.