Classification in High Dimension Using the Ledoit–Wolf Shrinkage Method
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ledoit, Olivier & Wolf, Michael, 2004.
"A well-conditioned estimator for large-dimensional covariance matrices,"
Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
- Ledoit, Olivier & Wolf, Michael, 2000. "A well conditioned estimator for large dimensional covariance matrices," DES - Working Papers. Statistics and Econometrics. WS 10087, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Le, Khuyen T. & Chaux, Caroline & Richard, Frédéric J.P. & Guedj, Eric, 2020. "An adapted linear discriminant analysis with variable selection for the classification in high-dimension, and an application to medical data," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
- Norm A. Campbell, 1980. "Shrunken Estimators in Discriminant and Canonical Variate Analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(1), pages 5-14, March.
- Jacob Bien & Robert J. Tibshirani, 2011. "Sparse estimation of a covariance matrix," Biometrika, Biometrika Trust, vol. 98(4), pages 807-820.
- T. Tony Cai & Linjun Zhang, 2019. "High dimensional linear discriminant analysis: optimality, adaptive algorithm and missing data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(4), pages 675-705, September.
- Jianqing Fan & Yuan Liao & Han Liu, 2016. "An overview of the estimation of large covariance and precision matrices," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 1-32, February.
- Choi, Young-Geun & Lim, Johan & Roy, Anindya & Park, Junyong, 2019. "Fixed support positive-definite modification of covariance matrix estimators via linear shrinkage," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 234-249.
- Rothman, Adam J. & Levina, Elizaveta & Zhu, Ji, 2009. "Generalized Thresholding of Large Covariance Matrices," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 177-186.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
- Wang, Shaoxin, 2021. "An efficient numerical method for condition number constrained covariance matrix approximation," Applied Mathematics and Computation, Elsevier, vol. 397(C).
- Kashlak, Adam B., 2021. "Non-asymptotic error controlled sparse high dimensional precision matrix estimation," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
- Yan Zhang & Jiyuan Tao & Zhixiang Yin & Guoqiang Wang, 2022. "Improved Large Covariance Matrix Estimation Based on Efficient Convex Combination and Its Application in Portfolio Optimization," Mathematics, MDPI, vol. 10(22), pages 1-15, November.
- Gautam Sabnis & Debdeep Pati & Anirban Bhattacharya, 2019. "Compressed Covariance Estimation with Automated Dimension Learning," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 466-481, December.
- Lee, Kyoungjae & Jo, Seongil & Lee, Jaeyong, 2022. "The beta-mixture shrinkage prior for sparse covariances with near-minimax posterior convergence rate," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
- Bailey, Natalia & Pesaran, M. Hashem & Smith, L. Vanessa, 2019.
"A multiple testing approach to the regularisation of large sample correlation matrices,"
Journal of Econometrics, Elsevier, vol. 208(2), pages 507-534.
- Natalia Bailey & Vanessa Smith & M. Hashem Pesaran, 2014. "A multiple testing approach to the regularisation of large sample correlation matrices," Cambridge Working Papers in Economics 1413, Faculty of Economics, University of Cambridge.
- Natalia Bailey & M. Hashem Pesaran & L. Vanessa Smith, 2015. "A Multiple Testing Approach to the Regularisation of Large Sample Correlation Matrices," Working Papers 764, Queen Mary University of London, School of Economics and Finance.
- Natalia Bailey & M. Hashem Pesaran & L. Vanessa Smith, 2014. "A Multiple Testing Approach to the Regularisation of Large Sample Correlation Matrices," CESifo Working Paper Series 4834, CESifo.
- Maurizio Daniele & Winfried Pohlmeier & Aygul Zagidullina, 2018.
"Sparse Approximate Factor Estimation for High-Dimensional Covariance Matrices,"
Working Paper Series of the Department of Economics, University of Konstanz
2018-07, Department of Economics, University of Konstanz.
- Maurizio Daniele & Winfried Pohlmeier & Aygul Zagidullina, 2020. "Sparse Approximate Factor Estimation for High-Dimensional Covariance Matrices," Working Paper series 20-03, Rimini Centre for Economic Analysis.
- Maurizio Daniele & Winfried Pohlmeier & Aygul Zagidullina, 2019. "Sparse Approximate Factor Estimation for High-Dimensional Covariance Matrices," Papers 1906.05545, arXiv.org.
- Shaoxin Wang & Hu Yang & Chaoli Yao, 2019. "On the penalized maximum likelihood estimation of high-dimensional approximate factor model," Computational Statistics, Springer, vol. 34(2), pages 819-846, June.
- Piotr Zwiernik & Caroline Uhler & Donald Richards, 2017. "Maximum likelihood estimation for linear Gaussian covariance models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1269-1292, September.
- Choi, Young-Geun & Lim, Johan & Roy, Anindya & Park, Junyong, 2019. "Fixed support positive-definite modification of covariance matrix estimators via linear shrinkage," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 234-249.
- Aaron J Molstad & Adam J Rothman, 2018. "Shrinking characteristics of precision matrix estimators," Biometrika, Biometrika Trust, vol. 105(3), pages 563-574.
- Farnè, Matteo & Montanari, Angela, 2020. "A large covariance matrix estimator under intermediate spikiness regimes," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
- Avagyan, Vahe & Nogales, Francisco J., 2015. "D-trace Precision Matrix Estimation Using Adaptive Lasso Penalties," DES - Working Papers. Statistics and Econometrics. WS 21775, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Benjamin Poignard & Manabu Asai, 2023.
"Estimation of high-dimensional vector autoregression via sparse precision matrix,"
The Econometrics Journal, Royal Economic Society, vol. 26(2), pages 307-326.
- Benjamin Poignard & Manabu Asai, 2021. "Estimation of High Dimensional Vector Autoregression via Sparse Precision Matrix," Discussion Papers in Economics and Business 21-03, Osaka University, Graduate School of Economics.
- Zhou Tang & Zhangsheng Yu & Cheng Wang, 2020. "A fast iterative algorithm for high-dimensional differential network," Computational Statistics, Springer, vol. 35(1), pages 95-109, March.
- Li, Degui, 2024. "Estimation of Large Dynamic Covariance Matrices: A Selective Review," Econometrics and Statistics, Elsevier, vol. 29(C), pages 16-30.
- Zeyu Wu & Cheng Wang & Weidong Liu, 2023. "A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(4), pages 619-648, August.
- Jingying Yang, 2024. "Element Aggregation for Estimation of High-Dimensional Covariance Matrices," Mathematics, MDPI, vol. 12(7), pages 1-16, March.
- Daniel Felix Ahelegbey & Luis Carvalho & Eric D. Kolaczyk, 2020. "A Bayesian Covariance Graph And Latent Position Model For Multivariate Financial Time Series," DEM Working Papers Series 181, University of Pavia, Department of Economics and Management.
More about this item
Keywords
classification; linear discriminant analysis; high-dimensional data; Ledoit and Wolf shrinkage method; Stein-type shrinkage; misclassification error;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:21:p:4069-:d:959980. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.