IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v48y2021i3p881-907.html
   My bibliography  Save this article

On the identification of individual level pleiotropic, pure direct, and principal stratum direct effects without cross world assumptions

Author

Listed:
  • Jaffer M. Zaidi
  • Tyler J. VanderWeele

Abstract

The analysis of natural direct and principal stratum direct effects has a controversial history in statistics and causal inference as these effects are commonly identified with either untestable cross world independence or graphical assumptions. This article demonstrates that the presence of individual level natural direct and principal stratum direct effects can be identified without cross world independence assumptions. We also define a new type of causal effect, called pleiotropy, that is of interest in genomics, and provide empirical conditions to detect such an effect as well. Our results are applicable for all types of distributions concerning the mediator and outcome.

Suggested Citation

  • Jaffer M. Zaidi & Tyler J. VanderWeele, 2021. "On the identification of individual level pleiotropic, pure direct, and principal stratum direct effects without cross world assumptions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 881-907, September.
  • Handle: RePEc:bla:scjsta:v:48:y:2021:i:3:p:881-907
    DOI: 10.1111/sjos.12464
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12464
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12464?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Constantine E. Frangakis & Donald B. Rubin, 2002. "Principal Stratification in Causal Inference," Biometrics, The International Biometric Society, vol. 58(1), pages 21-29, March.
    2. Zhihong Cai & Manabu Kuroki & Judea Pearl & Jin Tian, 2008. "Bounds on Direct Effects in the Presence of Confounded Intermediate Variables," Biometrics, The International Biometric Society, vol. 64(3), pages 695-701, September.
    3. Sonja A. Swanson & Miguel A. Hernán & Matthew Miller & James M. Robins & Thomas S. Richardson, 2018. "Partial Identification of the Average Treatment Effect Using Instrumental Variables: Review of Methods for Binary Instruments, Treatments, and Outcomes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 933-947, April.
    4. Kosuke Imai & Dustin Tingley & Teppei Yamamoto, 2013. "Experimental designs for identifying causal mechanisms," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 176(1), pages 5-51, January.
    5. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, October.
    6. Tyler J. Vanderweele & James M. Robins, 2008. "Empirical and counterfactual conditions for sufficient cause interactions," Biometrika, Biometrika Trust, vol. 95(1), pages 49-61.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eduardo Fé, 2021. "Pension eligibility rules and the local causal effect of retirement on cognitive functioning," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 812-841, July.
    2. Ottoboni Kellie N. & Poulos Jason V., 2020. "Estimating population average treatment effects from experiments with noncompliance," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 108-130, January.
    3. Rachel Axelrod & Daniel Nevo, 2023. "A sensitivity analysis approach for the causal hazard ratio in randomized and observational studies," Biometrics, The International Biometric Society, vol. 79(3), pages 2743-2756, September.
    4. Plamen Nikolov & Hongjian Wang & Kevin Acker, 2020. "Wage premium of Communist Party membership: Evidence from China," Pacific Economic Review, Wiley Blackwell, vol. 25(3), pages 309-338, August.
    5. Tianmeng Lyu & Björn Bornkamp & Guenther Mueller‐Velten & Heinz Schmidli, 2023. "Bayesian inference for a principal stratum estimand on recurrent events truncated by death," Biometrics, The International Biometric Society, vol. 79(4), pages 3792-3802, December.
    6. Andrea Mercatanti & Fan Li, 2017. "Do debit cards decrease cash demand?: causal inference and sensitivity analysis using principal stratification," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 759-776, August.
    7. Bingbo Gao & Jianyu Yang & Ziyue Chen & George Sugihara & Manchun Li & Alfred Stein & Mei-Po Kwan & Jinfeng Wang, 2023. "Causal inference from cross-sectional earth system data with geographical convergent cross mapping," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Breda, Thomas & Grenet, Julien & Monnet, Marion & Van Effenterre, Clémentine, 2020. "Do Female Role Models Reduce the Gender Gap in Science? Evidence from French High Schools," IZA Discussion Papers 13163, Institute of Labor Economics (IZA).
    9. Park Soojin & Kürüm Esra, 2020. "A Two-Stage Joint Modeling Method for Causal Mediation Analysis in the Presence of Treatment Noncompliance," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 131-149, January.
    10. Eva Deuchert & Martin Huber & Mark Schelker, 2019. "Direct and Indirect Effects Based on Difference-in-Differences With an Application to Political Preferences Following the Vietnam Draft Lottery," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(4), pages 710-720, October.
    11. James J. Heckman & Rodrigo Pinto, 2022. "Causality and Econometrics," NBER Working Papers 29787, National Bureau of Economic Research, Inc.
    12. Heckman, James & Pinto, Rodrigo, 2024. "Econometric causality: The central role of thought experiments," Journal of Econometrics, Elsevier, vol. 243(1).
    13. Federica Licari & Alessandra Mattei, 2020. "Assessing causal effects of extra compulsory learning on college students’ academic performances," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1595-1614, October.
    14. Shanshan Luo & Wei Li & Yangbo He, 2023. "Causal inference with outcomes truncated by death in multiarm studies," Biometrics, The International Biometric Society, vol. 79(1), pages 502-513, March.
    15. Michela Baccini & Alessandra Mattei & Fabrizia Mealli, 2015. "Bayesian inference for causal mechanisms with application to a randomized study for postoperative pain control," Econometrics Working Papers Archive 2015_06, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    16. Ali Tafti & Galit Shmueli, 2020. "Beyond Overall Treatment Effects: Leveraging Covariates in Randomized Experiments Guided by Causal Structure," Information Systems Research, INFORMS, vol. 31(4), pages 1183-1199, December.
    17. Park Soojin & Kürüm Esra, 2020. "A Two-Stage Joint Modeling Method for Causal Mediation Analysis in the Presence of Treatment Noncompliance," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 131-149, January.
    18. Masayuki Sawada, 2019. "Noncompliance in randomized control trials without exclusion restrictions," Papers 1910.03204, arXiv.org, revised Jun 2021.
    19. Ke Zhu & Hanzhong Liu, 2023. "Pair‐switching rerandomization," Biometrics, The International Biometric Society, vol. 79(3), pages 2127-2142, September.
    20. Martin Huber, 2015. "Causal Pitfalls in the Decomposition of Wage Gaps," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 179-191, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:48:y:2021:i:3:p:881-907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.