IDEAS home Printed from https://ideas.repec.org/a/inm/ormksc/v43y2024i4p903-917.html
   My bibliography  Save this article

Latent Stratification for Incrementality Experiments

Author

Listed:
  • Ron Berman

    (The Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania 19104)

  • Elea McDonnell Feit

    (LeBow College of Business, Drexel University, Philadelphia, Pennsylvania 19104)

Abstract

Incrementality experiments compare customers exposed to a marketing action designed to increase sales with those randomly assigned to a control group. These experiments suffer from noisy responses, which make precise estimation of the average treatment effect (ATE) and marketing return difficult. We develop a model that improves the precision by estimating separate treatment effects for three latent strata defined by potential outcomes in the experiment—customers who would buy regardless of ad exposure, those who would buy only if exposed to ads, and those who would not buy regardless. The overall ATE is estimated by averaging the strata-level effects, and this produces a more precise estimator of the ATE over a wide range of conditions typical of marketing experiments. Analytical results and simulations show that the method decreases the sampling variance of the ATE most when (1) there are large differences in the treatment effect between latent strata and (2) the model used to estimate the strata-level effects is well identified. Applying the procedure to five catalog experiments shows a reduction of 30%–60% in the variance of the overall ATE. This leads to a substantial decrease in decision errors when the estimator is used to determine whether ads should be continued or discontinued.

Suggested Citation

  • Ron Berman & Elea McDonnell Feit, 2024. "Latent Stratification for Incrementality Experiments," Marketing Science, INFORMS, vol. 43(4), pages 903-917, July.
  • Handle: RePEc:inm:ormksc:v:43:y:2024:i:4:p:903-917
    DOI: 10.1287/mksc.2022.0297
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mksc.2022.0297
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mksc.2022.0297?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:43:y:2024:i:4:p:903-917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.