IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v47y2020i3p711-756.html
   My bibliography  Save this article

The null hypothesis of (common) jumps in case of irregular and asynchronous observations

Author

Listed:
  • Ole Martin
  • Mathias Vetter

Abstract

This paper proposes novel tests for the absence of jumps in a univariate semimartingale and for the absence of common jumps in a bivariate semimartingale. Our methods rely on ratio statistics of power variations based on irregular observations, sampled at different frequencies. We develop central limit theorems for the statistics under the respective null hypotheses and apply bootstrap procedures to assess the limiting distributions. Furthermore, we define corrected statistics to improve the finite sample performance. Simulations show that the test based on our corrected statistic yields good results and even outperforms existing tests in the case of regular observations.

Suggested Citation

  • Ole Martin & Mathias Vetter, 2020. "The null hypothesis of (common) jumps in case of irregular and asynchronous observations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 711-756, September.
  • Handle: RePEc:bla:scjsta:v:47:y:2020:i:3:p:711-756
    DOI: 10.1111/sjos.12422
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12422
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12422?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Takaki Hayashi & Nakahiro Yoshida, 2008. "Asymptotic normality of a covariance estimator for nonsynchronously observed diffusion processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(2), pages 367-406, June.
    2. Markus Bibinger & Mathias Vetter, 2015. "Estimating the quadratic covariation of an asynchronously observed semimartingale with jumps," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(4), pages 707-743, August.
    3. Xin Huang & George Tauchen, 2005. "The Relative Contribution of Jumps to Total Price Variance," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 456-499.
    4. Mark Podolskij & Mathias Vetter, 2010. "Understanding limit theorems for semimartingales: a short survey," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(3), pages 329-351, August.
    5. Mark Podolskij & Mathias Vetter, 2010. "Understanding limit theorems for semimartingales: a short survey," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(s1), pages 329-351.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simon Clinet & Yoann Potiron, 2021. "Estimation for high-frequency data under parametric market microstructure noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(4), pages 649-669, August.
    2. Zhao, X. & Hong, S. Y. & Linton, O. B., 2024. "Jumps Versus Bursts: Dissection and Origins via a New Endogenous Thresholding Approach," Cambridge Working Papers in Economics 2449, Faculty of Economics, University of Cambridge.
    3. Zhao, X. & Hong, S. Y. & Linton, O. B., 2024. "Jumps Versus Bursts: Dissection and Origins via a New Endogenous Thresholding Approach," Janeway Institute Working Papers 2423, Faculty of Economics, University of Cambridge.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Markus Bibinger & Mathias Vetter, 2015. "Estimating the quadratic covariation of an asynchronously observed semimartingale with jumps," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(4), pages 707-743, August.
    2. Neil Shephard & Kevin Sheppard, 2012. "Efficient and feasible inference for the components of financial variation using blocked multipower variation," Economics Series Working Papers 593, University of Oxford, Department of Economics.
    3. Yuta Koike & Zhi Liu, 2019. "Asymptotic properties of the realized skewness and related statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 703-741, August.
    4. Bibinger, Markus, 2011. "Asymptotics of asynchronicity," SFB 649 Discussion Papers 2011-033, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. repec:hum:wpaper:sfb649dp2013-029 is not listed on IDEAS
    6. Bibinger, Markus, 2011. "An estimator for the quadratic covariation of asynchronously observed Itô processes with noise: Asymptotic distribution theory," SFB 649 Discussion Papers 2011-034, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    7. Hounyo, Ulrich, 2017. "Bootstrapping integrated covariance matrix estimators in noisy jump–diffusion models with non-synchronous trading," Journal of Econometrics, Elsevier, vol. 197(1), pages 130-152.
    8. Ulrich Hounyo, 2014. "Bootstrapping integrated covariance matrix estimators in noisy jump-diffusion models with non-synchronous trading," CREATES Research Papers 2014-35, Department of Economics and Business Economics, Aarhus University.
    9. Bibinger, Markus, 2012. "An estimator for the quadratic covariation of asynchronously observed Itô processes with noise: Asymptotic distribution theory," Stochastic Processes and their Applications, Elsevier, vol. 122(6), pages 2411-2453.
    10. Zu, Yang & Peter Boswijk, H., 2014. "Estimating spot volatility with high-frequency financial data," Journal of Econometrics, Elsevier, vol. 181(2), pages 117-135.
    11. Bibinger, Markus & Vetter, Mathias, 2013. "Estimating the quadratic covariation of an asynchronously observed semimartingale with jumps," SFB 649 Discussion Papers 2013-029, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    12. Mark Podolskij & Christian Schmidt & Mathias Vetter, 2015. "On U- and V-statistics for discontinuous Itô semimartingale," CREATES Research Papers 2015-52, Department of Economics and Business Economics, Aarhus University.
    13. Altmeyer, Randolf & Bibinger, Markus, 2015. "Functional stable limit theorems for quasi-efficient spectral covolatility estimators," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4556-4600.
    14. Andreas Basse-O'Connor & Mark Podolskij, 2015. "On critical cases in limit theory for stationary increments Lévy driven moving averages," CREATES Research Papers 2015-57, Department of Economics and Business Economics, Aarhus University.
    15. Imma Valentina Curato, 2012. "Asymptotics for the Fourier estimators of the volatility of volatility and the leverage," Working Papers - Mathematical Economics 2012-11, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    16. Aleksey Kolokolov & Giulia Livieri & Davide Pirino, 2022. "Testing for Endogeneity of Irregular Sampling Schemes," CEIS Research Paper 547, Tor Vergata University, CEIS, revised 19 Dec 2022.
    17. Kolokolov, Aleksey & Livieri, Giulia & Pirino, Davide, 2018. "Statistical inferences for price staleness," SAFE Working Paper Series 236, Leibniz Institute for Financial Research SAFE.
    18. Claudio Heinrich & Mark Podolskij, 2014. "On spectral distribution of high dimensional covariation matrices," CREATES Research Papers 2014-54, Department of Economics and Business Economics, Aarhus University.
    19. Caporin, Massimiliano & Kolokolov, Aleksey & Renò, Roberto, 2017. "Systemic co-jumps," Journal of Financial Economics, Elsevier, vol. 126(3), pages 563-591.
    20. Simon Clinet & Yoann Potiron, 2021. "Estimation for high-frequency data under parametric market microstructure noise," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(4), pages 649-669, August.
    21. Loboda, Dennis & Mies, Fabian & Steland, Ansgar, 2021. "Regularity of multifractional moving average processes with random Hurst exponent," Stochastic Processes and their Applications, Elsevier, vol. 140(C), pages 21-48.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:47:y:2020:i:3:p:711-756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.