IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v44y2017i2p500-523.html
   My bibliography  Save this article

Location-invariant Multi-sample U-tests for Covariance Matrices with Large Dimension

Author

Listed:
  • M. Rauf Ahmad

Abstract

No abstract is available for this item.

Suggested Citation

  • M. Rauf Ahmad, 2017. "Location-invariant Multi-sample U-tests for Covariance Matrices with Large Dimension," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(2), pages 500-523, June.
  • Handle: RePEc:bla:scjsta:v:44:y:2017:i:2:p:500-523
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/sjos.12262
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. Harris, 1984. "An alternative test for multisample sphericity," Psychometrika, Springer;The Psychometric Society, vol. 49(2), pages 273-275, June.
    2. Chen, Song Xi & Zhang, Li-Xin & Zhong, Ping-Shou, 2010. "Tests for High-Dimensional Covariance Matrices," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 810-819.
    3. Jorge Mendoza, 1980. "A significance test for multisample sphericity," Psychometrika, Springer;The Psychometric Society, vol. 45(4), pages 495-498, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmad, Rauf, 2022. "Tests for proportionality of matrices with large dimension," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    2. Ahmad, M. Rauf & Ahmed, S. Ejaz, 2021. "On the distribution of the T2 statistic, used in statistical process monitoring, for high-dimensional data," Statistics & Probability Letters, Elsevier, vol. 168(C).
    3. Rauf Ahmad, M. & Pavlenko, Tatjana, 2018. "A U-classifier for high-dimensional data under non-normality," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 269-283.
    4. Rauf Ahmad, M., 2019. "A significance test of the RV coefficient in high dimensions," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 116-130.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hannart, Alexis & Naveau, Philippe, 2014. "Estimating high dimensional covariance matrices: A new look at the Gaussian conjugate framework," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 149-162.
    2. Wang, Cheng, 2014. "Asymptotic power of likelihood ratio tests for high dimensional data," Statistics & Probability Letters, Elsevier, vol. 88(C), pages 184-189.
    3. Ley, Christophe & Paindaveine, Davy & Verdebout, Thomas, 2015. "High-dimensional tests for spherical location and spiked covariance," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 79-91.
    4. Zhou, Bu & Guo, Jia, 2017. "A note on the unbiased estimator of Σ2," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 141-146.
    5. Peng, Liuhua & Chen, Song Xi & Zhou, Wen, 2016. "More powerful tests for sparse high-dimensional covariances matrices," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 124-143.
    6. Tian, Xintao & Lu, Yuting & Li, Weiming, 2015. "A robust test for sphericity of high-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 217-227.
    7. Jiang, Hui & Wang, Shaochen, 2017. "Moderate deviation principles for classical likelihood ratio tests of high-dimensional normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 57-69.
    8. Peng, Hanxiang & Schick, Anton, 2018. "Asymptotic normality of quadratic forms with random vectors of increasing dimension," Journal of Multivariate Analysis, Elsevier, vol. 164(C), pages 22-39.
    9. Cai, T. Tony & Zhang, Anru, 2016. "Minimax rate-optimal estimation of high-dimensional covariance matrices with incomplete data," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 55-74.
    10. Guo, Wenwen & Cui, Hengjian, 2019. "Projection tests for high-dimensional spiked covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 21-32.
    11. Qiu, Yumou & Chen, Songxi, 2012. "Test for Bandedness of High Dimensional Covariance Matrices with Bandwidth Estimation," MPRA Paper 46242, University Library of Munich, Germany.
    12. Tsukuda, Koji & Matsuura, Shun, 2019. "High-dimensional testing for proportional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 412-420.
    13. Yukun Liu & Changliang Zou & Zhaojun Wang, 2013. "Calibration of the empirical likelihood for high-dimensional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 529-550, June.
    14. Bodnar, Taras & Mazur, Stepan & Ngailo, Edward & Parolya, Nestor, 2017. "Discriminant analysis in small and large dimensions," Working Papers 2017:6, Örebro University, School of Business.
    15. Feng, Long & Liu, Binghui, 2017. "High-dimensional rank tests for sphericity," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 217-233.
    16. Glombek, Konstantin, 2013. "A Jarque-Bera test for sphericity of a large-dimensional covariance matrix," Discussion Papers in Econometrics and Statistics 1/13, University of Cologne, Institute of Econometrics and Statistics.
    17. Bin Guo & Song Xi Chen, 2016. "Tests for high dimensional generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 1079-1102, November.
    18. Wang, Cheng & Yang, Jing & Miao, Baiqi & Cao, Longbing, 2013. "Identity tests for high dimensional data using RMT," Journal of Multivariate Analysis, Elsevier, vol. 118(C), pages 128-137.
    19. Mao, Guangyu, 2016. "A note on tests for high-dimensional covariance matrices," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 89-92.
    20. Wei Lan & Ronghua Luo & Chih-Ling Tsai & Hansheng Wang & Yunhong Yang, 2015. "Testing the Diagonality of a Large Covariance Matrix in a Regression Setting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 76-86, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:44:y:2017:i:2:p:500-523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.