IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v41y2014i3p791-808.html
   My bibliography  Save this article

Generalized Scan Statistics for Disease Surveillance

Author

Listed:
  • Pei-Sheng Lin

Abstract

type="main" xml:id="sjos12063-abs-0001"> In applying scan statistics for disease surveillance, it would be valuable to have an integrated model that simultaneously includes environmental covariates and spatial correlation. In this paper, a generalized scan statistics under quasi-likelihood functions is proposed to address this issue. We use a two-step estimation process to obtain estimates of coefficients and adapt a bootstrapping method for the minimal p-value to address the multiple-testing problem. Under suitable conditions, the proposed method is consistent and can control the type I error rate. Simulations and applications to real data sets are used to evaluate the method.

Suggested Citation

  • Pei-Sheng Lin, 2014. "Generalized Scan Statistics for Disease Surveillance," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 791-808, September.
  • Handle: RePEc:bla:scjsta:v:41:y:2014:i:3:p:791-808
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/sjos.12063
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pei-Sheng Lin, 2008. "Estimating equations for spatially correlated data in multi-dimensional space," Biometrika, Biometrika Trust, vol. 95(4), pages 847-858.
    2. Tonglin Zhang & Ge Lin, 2009. "Cluster Detection Based on Spatial Associations and Iterated Residuals in Generalized Linear Mixed Models," Biometrics, The International Biometric Society, vol. 65(2), pages 353-360, June.
    3. J. Law, 2009. "Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology by LAWSON, A. B," Biometrics, The International Biometric Society, vol. 65(2), pages 661-662, June.
    4. Ozonoff, Al & Bonetti, Marco & Forsberg, Laura & Pagano, Marcello, 2005. "Power comparisons for an improved disease clustering test," Computational Statistics & Data Analysis, Elsevier, vol. 48(4), pages 679-684, April.
    5. Kulldorff, Martin & Tango, Toshiro & Park, Peter J., 2003. "Power comparisons for disease clustering tests," Computational Statistics & Data Analysis, Elsevier, vol. 42(4), pages 665-684, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pei‐Sheng Lin & Jun Zhu, 2020. "A heterogeneity measure for cluster identification with application to disease mapping," Biometrics, The International Biometric Society, vol. 76(2), pages 403-413, June.
    2. Goel, Varun & Kumar, Naresh & Singh, Paramvir, 2018. "Impact of modified parameters on diesel engine characteristics using biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2716-2729.
    3. Mohamed-Salem Ahmed & Lionel Cucala & Michaël Genin, 2021. "Spatial autoregressive models for scan statistic," Journal of Spatial Econometrics, Springer, vol. 2(1), pages 1-20, December.
    4. Malinga, G.A. & Niedzwecki, J.M., 2016. "Lightning field behavior around grounded airborne systems," Renewable Energy, Elsevier, vol. 87(P1), pages 572-584.
    5. Pei‐Sheng Lin & Yi‐Hung Kung & Murray Clayton, 2016. "Spatial scan statistics for detection of multiple clusters with arbitrary shapes," Biometrics, The International Biometric Society, vol. 72(4), pages 1226-1234, December.
    6. Riechers, Maraja & Barkmann, Jan & Tscharntke, Teja, 2016. "Perceptions of cultural ecosystem services from urban green," Ecosystem Services, Elsevier, vol. 17(C), pages 33-39.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. White, Laura Forsberg & Bonetti, Marco & Pagano, Marcello, 2009. "The choice of the number of bins for the M statistic," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3640-3649, August.
    2. Demattei[diaeresis], Christophe & Molinari, Nicolas & Daures, Jean-Pierre, 2007. "Arbitrarily shaped multiple spatial cluster detection for case event data," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3931-3945, May.
    3. HAEDO, Christian & MOUCHART , Michel & ,, 2013. "Specialized agglomerations with areal data: model and detection," LIDAM Discussion Papers CORE 2013060, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Pei‐Sheng Lin & Yi‐Hung Kung & Murray Clayton, 2016. "Spatial scan statistics for detection of multiple clusters with arbitrary shapes," Biometrics, The International Biometric Society, vol. 72(4), pages 1226-1234, December.
    5. Ozonoff, Al & Bonetti, Marco & Forsberg, Laura & Pagano, Marcello, 2005. "Power comparisons for an improved disease clustering test," Computational Statistics & Data Analysis, Elsevier, vol. 48(4), pages 679-684, April.
    6. Wan, You & Pei, Tao & Zhou, Chenghu & Jiang, Yong & Qu, Chenxu & Qiao, Youlin, 2012. "ACOMCD: A multiple cluster detection algorithm based on the spatial scan statistic and ant colony optimization," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 283-296.
    7. Hsu, Chia-Yueh & Chang, Shu-Sen & Lee, Esther S.T. & Yip, Paul S.F., 2015. "“Geography of suicide in Hong Kong: Spatial patterning, and socioeconomic correlates and inequalities”," Social Science & Medicine, Elsevier, vol. 130(C), pages 190-203.
    8. Silva, Ivair R. & Duczmal, Luiz & Kulldorff, Martin, 2021. "Confidence intervals for spatial scan statistic," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    9. Rashidi, Parinaz & Wang, Tiejun & Skidmore, Andrew & Vrieling, Anton & Darvishzadeh, Roshanak & Toxopeus, Bert & Ngene, Shadrack & Omondi, Patrick, 2015. "Spatial and spatiotemporal clustering methods for detecting elephant poaching hotspots," Ecological Modelling, Elsevier, vol. 297(C), pages 180-186.
    10. Ibrahim Musa & Hyun Woo Park & Lkhagvadorj Munkhdalai & Keun Ho Ryu, 2018. "Global Research on Syndromic Surveillance from 1993 to 2017: Bibliometric Analysis and Visualization," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
    11. Shang, Zuofeng, 2012. "On latent process models in multi-dimensional space," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1259-1266.
    12. Fei He & Daniel R. Jeske & Elizabeth Grafton‐Cardwell, 2020. "Identifying high‐density regions of pests within an orchard," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 36(3), pages 417-431, May.
    13. Wei Wang & Sheng Li & Tao Zhang & Fei Yin & Yue Ma, 2023. "Detecting the spatial clustering of exposure–response relationships with estimation error: a novel spatial scan statistic," Biometrics, The International Biometric Society, vol. 79(4), pages 3522-3532, December.
    14. Lin, Pei-Sheng & Chen, Feng-Chi & Kuo, Shu-Fu & Kung, Yi-Hung, 2014. "Assessing the relationship of evolutionary rates and functional variables by mixture estimating equations," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 248-256.
    15. Lina Zgaga & Felix Agakov & Evropi Theodoratou & Susan M Farrington & Albert Tenesa & Malcolm G Dunlop & Paul McKeigue & Harry Campbell, 2013. "Model Selection Approach Suggests Causal Association between 25-Hydroxyvitamin D and Colorectal Cancer," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-11, May.
    16. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    17. Khalid Al-Ahmadi & Sabah Alahmadi & Ali Al-Zahrani, 2019. "Spatiotemporal Clustering of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Incidence in Saudi Arabia, 2012–2019," IJERPH, MDPI, vol. 16(14), pages 1-14, July.
    18. Zhang, Tonglin & Lin, Ge, 2016. "On Moran’s I coefficient under heterogeneity," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 83-94.
    19. Costa, Marcelo Azevedo & Assunção, Renato Martins & Kulldorff, Martin, 2012. "Constrained spanning tree algorithms for irregularly-shaped spatial clustering," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1771-1783.
    20. Bao, Jie & Yang, Zhao & Zeng, Weili & Shi, Xiaomeng, 2021. "Exploring the spatial impacts of human activities on urban traffic crashes using multi-source big data," Journal of Transport Geography, Elsevier, vol. 94(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:41:y:2014:i:3:p:791-808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.