IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v76y2020i2p403-413.html
   My bibliography  Save this article

A heterogeneity measure for cluster identification with application to disease mapping

Author

Listed:
  • Pei‐Sheng Lin
  • Jun Zhu

Abstract

Mapping of disease incidence has long been of importance to epidemiology and public health. In this paper, we consider identification of clusters of spatial units with elevated disease rates and develop a new approach that estimates the relative disease risk in association with potential risk factors and simultaneously identifies clusters corresponding to elevated risks. A heterogeneity measure is proposed to enable the comparison of a candidate cluster and its complement under a pair of complementary models. A quasi‐likelihood procedure is developed for estimating the model parameters and identifying the clusters. An advantage of our approach over traditional spatial clustering methods is the identification of clusters that can have arbitrary shapes due to abrupt or noncontiguous changes while accounting for risk factors and spatial correlation. Asymptotic properties of the proposed methodology are established and a simulation study shows empirically sound finite‐sample properties. The mapping and clustering of enterovirus 71 infections in Taiwan are carried out for illustration.

Suggested Citation

  • Pei‐Sheng Lin & Jun Zhu, 2020. "A heterogeneity measure for cluster identification with application to disease mapping," Biometrics, The International Biometric Society, vol. 76(2), pages 403-413, June.
  • Handle: RePEc:bla:biomet:v:76:y:2020:i:2:p:403-413
    DOI: 10.1111/biom.13145
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13145
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13145?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pei-Sheng Lin, 2014. "Generalized Scan Statistics for Disease Surveillance," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 791-808, September.
    2. Pei‐Sheng Lin & Yi‐Hung Kung & Murray Clayton, 2016. "Spatial scan statistics for detection of multiple clusters with arbitrary shapes," Biometrics, The International Biometric Society, vol. 72(4), pages 1226-1234, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pei‐Sheng Lin & Yi‐Hung Kung & Murray Clayton, 2016. "Spatial scan statistics for detection of multiple clusters with arbitrary shapes," Biometrics, The International Biometric Society, vol. 72(4), pages 1226-1234, December.
    2. Riechers, Maraja & Barkmann, Jan & Tscharntke, Teja, 2016. "Perceptions of cultural ecosystem services from urban green," Ecosystem Services, Elsevier, vol. 17(C), pages 33-39.
    3. Goel, Varun & Kumar, Naresh & Singh, Paramvir, 2018. "Impact of modified parameters on diesel engine characteristics using biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2716-2729.
    4. Mohamed-Salem Ahmed & Lionel Cucala & Michaël Genin, 2021. "Spatial autoregressive models for scan statistic," Journal of Spatial Econometrics, Springer, vol. 2(1), pages 1-20, December.
    5. Kunihiko Takahashi & Hideyasu Shimadzu, 2018. "Multiple-cluster detection test for purely temporal disease clustering: Integration of scan statistics and generalized linear models," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-15, November.
    6. Malinga, G.A. & Niedzwecki, J.M., 2016. "Lightning field behavior around grounded airborne systems," Renewable Energy, Elsevier, vol. 87(P1), pages 572-584.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:76:y:2020:i:2:p:403-413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.