IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v37y2010i4p664-679.html
   My bibliography  Save this article

Optimal Composite Markers for Time‐Dependent Receiver Operating Characteristic Curves with Censored Survival Data

Author

Listed:
  • HUNG HUNG
  • CHIN‐TSANG CHIANG

Abstract

. To increase the predictive abilities of several plasma biomarkers on the coronary artery disease (CAD)‐related vital statuses over time, our research interest mainly focuses on seeking combinations of these biomarkers with the highest time‐dependent receiver operating characteristic curves. An extended generalized linear model (EGLM) with time‐varying coefficients and an unknown bivariate link function is used to characterize the conditional distribution of time to CAD‐related death. Based on censored survival data, two non‐parametric procedures are proposed to estimate the optimal composite markers, linear predictors in the EGLM model. Estimation methods for the classification accuracies of the optimal composite markers are also proposed. In the article we establish theoretical results of the estimators and examine the corresponding finite‐sample properties through a series of simulations with different sample sizes, censoring rates and censoring mechanisms. Our optimization procedures and estimators are further shown to be useful through an application to a prospective cohort study of patients undergoing angiography.

Suggested Citation

  • Hung Hung & Chin‐Tsang Chiang, 2010. "Optimal Composite Markers for Time‐Dependent Receiver Operating Characteristic Curves with Censored Survival Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(4), pages 664-679, December.
  • Handle: RePEc:bla:scjsta:v:37:y:2010:i:4:p:664-679
    DOI: 10.1111/j.1467-9469.2009.00683.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9469.2009.00683.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9469.2009.00683.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yingye Zheng & Tianxi Cai & Ziding Feng, 2006. "Application of the Time-Dependent ROC Curves for Prognostic Accuracy with Multiple Biomarkers," Biometrics, The International Biometric Society, vol. 62(1), pages 279-287, March.
    2. Horowitz, Joel L, 1992. "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, Econometric Society, vol. 60(3), pages 505-531, May.
    3. Khan, Shakeeb & Tamer, Elie, 2007. "Partial rank estimation of duration models with general forms of censoring," Journal of Econometrics, Elsevier, vol. 136(1), pages 251-280, January.
    4. Li, Gang & Zhou, Kefei, 2008. "A Unified Approach to Nonparametric Comparison of Receiver Operating Characteristic Curves for Longitudinal and Clustered Data," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 705-713, June.
    5. Shuangge Ma & Jian Huang, 2007. "Combining Multiple Markers for Classification Using ROC," Biometrics, The International Biometric Society, vol. 63(3), pages 751-757, September.
    6. Chin-Tsang Chiang & Shr-Yan Huang, 2009. "Estimation for the Optimal Combination of Markers without Modeling the Censoring Distribution," Biometrics, The International Biometric Society, vol. 65(1), pages 152-158, March.
    7. Patrick J. Heagerty & Thomas Lumley & Margaret S. Pepe, 2000. "Time-Dependent ROC Curves for Censored Survival Data and a Diagnostic Marker," Biometrics, The International Biometric Society, vol. 56(2), pages 337-344, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Susana Díaz-Coto & Pablo Martínez-Camblor & Sonia Pérez-Fernández, 2020. "smoothROCtime: an R package for time-dependent ROC curve estimation," Computational Statistics, Springer, vol. 35(3), pages 1231-1251, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao Song & Shuangge Ma, 2010. "Penalised variable selection with U-estimates," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(4), pages 499-515.
    2. Chin-Tsang Chiang & Shao-Hsuan Wang & Ming-Yueh Huang, 2018. "Versatile estimation in censored single-index hazards regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(3), pages 523-551, June.
    3. Chin-Tsang Chiang & Shr-Yan Huang, 2009. "Estimation for the Optimal Combination of Markers without Modeling the Censoring Distribution," Biometrics, The International Biometric Society, vol. 65(1), pages 152-158, March.
    4. Sokbae Lee & Myung Hwan Seo & Youngki Shin, 2017. "Correction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 883-883, April.
    5. Liu Xinhua & Jin Zhezhen, 2009. "A Non-Parametric Approach to Scale Reduction for Uni-Dimensional Screening Scales," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-22, January.
    6. Frederiksen, Anders & Honore, Bo E. & Hu, Luojia, 2007. "Discrete time duration models with group-level heterogeneity," Journal of Econometrics, Elsevier, vol. 141(2), pages 1014-1043, December.
    7. Bo E. Honoré & Luojia Hu, 2018. "Simpler bootstrap estimation of the asymptotic variance of U‐statistic‐based estimators," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-10, February.
    8. Chiang, Chin-Tsang & Chiu, Chih-Heng, 2012. "Nonparametric and semiparametric optimal transformations of markers," Journal of Multivariate Analysis, Elsevier, vol. 103(1), pages 124-141, January.
    9. Cheng Zheng & Yingye Zheng, 2019. "Calibrating Variations in Biomarker Measures for Improving Prediction with Time-to-event Outcomes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 477-503, December.
    10. Chen, Songnian, 2010. "Root-N-consistent estimation of fixed-effect panel data transformation models with censoring," Journal of Econometrics, Elsevier, vol. 159(1), pages 222-234, November.
    11. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    12. Ismaël Mourifié & Marc Henry & Romuald Méango, 2020. "Sharp Bounds and Testability of a Roy Model of STEM Major Choices," Journal of Political Economy, University of Chicago Press, vol. 128(8), pages 3220-3283.
    13. Patrick Bajari & Jeremy Fox & Stephen Ryan, 2008. "Evaluating wireless carrier consolidation using semiparametric demand estimation," Quantitative Marketing and Economics (QME), Springer, vol. 6(4), pages 299-338, December.
    14. Kemp, Gordon C.R. & Santos Silva, J.M.C., 2012. "Regression towards the mode," Journal of Econometrics, Elsevier, vol. 170(1), pages 92-101.
    15. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    16. Joseph G. Altonji & Rosa L. Matzkin, 2001. "Panel Data Estimators for Nonseparable Models with Endogenous Regressors," NBER Technical Working Papers 0267, National Bureau of Economic Research, Inc.
    17. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    18. Hagemann, Andreas, 2019. "Placebo inference on treatment effects when the number of clusters is small," Journal of Econometrics, Elsevier, vol. 213(1), pages 190-209.
    19. Delgado, Miguel A. & Rodriguez-Poo, Juan M. & Wolf, Michael, 2001. "Subsampling inference in cube root asymptotics with an application to Manski's maximum score estimator," Economics Letters, Elsevier, vol. 73(2), pages 241-250, November.
    20. Park, Byeong U. & Simar, Léopold & Zelenyuk, Valentin, 2017. "Nonparametric estimation of dynamic discrete choice models for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 97-120.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:37:y:2010:i:4:p:664-679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.