IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v36y2009i2p248-269.html
   My bibliography  Save this article

An Adaptive Two‐stage Estimation Method for Additive Models

Author

Listed:
  • LU LIN
  • XIA CUI
  • LIXING ZHU

Abstract

. In this paper, a two‐stage estimation method for non‐parametric additive models is investigated. Differing from Horowitz and Mammen's two‐stage estimation, our first‐stage estimators are designed not only for dimension reduction but also as initial approximations to all of the additive components. The second‐stage estimators are obtained by using one‐dimensional non‐parametric techniques to refine the first‐stage ones. From this procedure, we can reveal a relationship between the regression function spaces and convergence rate, and then provide estimators that are optimal in the sense that, better than the usual one‐dimensional mean‐squared error (MSE) of the order n−4/5, the MSE of the order n−1 can be achieved when the underlying models are actually parametric. This shows that our estimation procedure is adaptive in a certain sense. Also it is proved that the bandwidth that is selected by cross‐validation depends only on one‐dimensional kernel estimation and maintains the asymptotic optimality. Simulation studies show that the new estimators of the regression function and all components outperform the existing estimators, and their behaviours are often similar to that of the oracle estimator.

Suggested Citation

  • Lu Lin & Xia Cui & Lixing Zhu, 2009. "An Adaptive Two‐stage Estimation Method for Additive Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 248-269, June.
  • Handle: RePEc:bla:scjsta:v:36:y:2009:i:2:p:248-269
    DOI: 10.1111/j.1467-9469.2008.00629.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9469.2008.00629.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9469.2008.00629.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tiejun Tong & Yuedong Wang, 2005. "Estimating residual variance in nonparametric regression using least squares," Biometrika, Biometrika Trust, vol. 92(4), pages 821-830, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Lu & Song, Yunquan & Liu, Zhao, 2014. "Local linear–additive estimation for multiple nonparametric regressions," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 252-269.
    2. Zhenghui Feng & Lu Lin & Ruoqing Zhu & Lixing Zhu, 2020. "Nonparametric variable selection and its application to additive models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 827-854, June.
    3. Feng, Zheng-Hui & Lin, Lu & Zhu, Ruo-Qing & Zhu, Li-Xing, 2018. "Nonparametric Variable Selection and Its Application to Additive Models," IRTG 1792 Discussion Papers 2018-002, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Hall & Joel L. Horowitz, 2012. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers CWP14/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Yuejin Zhou & Yebin Cheng & Wenlin Dai & Tiejun Tong, 2018. "Optimal difference-based estimation for partially linear models," Computational Statistics, Springer, vol. 33(2), pages 863-885, June.
    3. Jingxin Zhao & Heng Peng & Tao Huang, 2018. "Variance estimation for semiparametric regression models by local averaging," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 453-476, June.
    4. Lu Lin & Feng Li, 2008. "Stable and bias-corrected estimation for nonparametric regression models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(4), pages 283-303.
    5. Mendez, Guillermo & Lohr, Sharon, 2011. "Estimating residual variance in random forest regression," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2937-2950, November.
    6. Zhijian Li & Wei Lin, 2020. "Efficient error variance estimation in non‐parametric regression," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 62(4), pages 467-484, December.
    7. Peter Hall & Joel L. Horowitz, 2012. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers 14/12, Institute for Fiscal Studies.
    8. Lu Lin & Feng Li, 2023. "Global debiased DC estimations for biased estimators via pro forma regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 726-758, June.
    9. Peter Hall & Joel L. Horowitz, 2013. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers CWP29/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. Eckhard Liebscher, 2012. "Model checks for parametric regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 132-155, March.
    11. Liitiäinen, Elia & Corona, Francesco & Lendasse, Amaury, 2010. "Residual variance estimation using a nearest neighbor statistic," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 811-823, April.
    12. Peter Hall & Joel L. Horowitz, 2013. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers 29/13, Institute for Fiscal Studies.
    13. Wenlin Dai & Tiejun Tong, 2014. "Variance estimation in nonparametric regression with jump discontinuities," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(3), pages 530-545, March.
    14. Martin Meermeyer, 2015. "Weighted linear regression models with fixed weights and spherical disturbances," Computational Statistics, Springer, vol. 30(4), pages 929-955, December.
    15. Wang, WenWu & Yu, Ping, 2017. "Asymptotically optimal differenced estimators of error variance in nonparametric regression," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 125-143.
    16. Germán Aneiros & Nengxiang Ling & Philippe Vieu, 2015. "Error variance estimation in semi-functional partially linear regression models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(3), pages 316-330, September.
    17. Hui-Ling Lin & Zhouping Li & Dongliang Wang & Yichuan Zhao, 2017. "Jackknife empirical likelihood for the error variance in linear models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 151-166, April.
    18. WenWu Wang & Lu Lin & Li Yu, 2017. "Optimal variance estimation based on lagged second-order difference in nonparametric regression," Computational Statistics, Springer, vol. 32(3), pages 1047-1063, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:36:y:2009:i:2:p:248-269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.