IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v105y2017icp125-143.html
   My bibliography  Save this article

Asymptotically optimal differenced estimators of error variance in nonparametric regression

Author

Listed:
  • Wang, WenWu
  • Yu, Ping

Abstract

The existing differenced estimators of error variance in nonparametric regression are interpreted as kernel estimators, and some requirements for a “good” estimator of error variance are specified. A new differenced method is then proposed that estimates the errors as the intercepts in a sequence of simple linear regressions and constructs a variance estimator based on estimated errors. The new estimator satisfies the requirements for a “good” estimator and achieves the asymptotically optimal mean square error. A feasible difference order is also derived, which makes the estimator more applicable. To improve the finite-sample performance, two bias-corrected versions are further proposed. All three estimators are equivalent to some local polynomial estimators and thus can be interpreted as kernel estimators. To determine which of the three estimators to be used in practice, a rule of thumb is provided by analysis of the mean square error, which solves an open problem in error variance estimation which difference sequence to be used in finite samples. Simulation studies and a real data application corroborate the theoretical results and illustrate the advantages of the new method compared with the existing methods.

Suggested Citation

  • Wang, WenWu & Yu, Ping, 2017. "Asymptotically optimal differenced estimators of error variance in nonparametric regression," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 125-143.
  • Handle: RePEc:eee:csdana:v:105:y:2017:i:c:p:125-143
    DOI: 10.1016/j.csda.2016.07.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947316301761
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2016.07.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jianqing Fan & Shaojun Guo & Ning Hao, 2012. "Variance estimation using refitted cross‐validation in ultrahigh dimensional regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(1), pages 37-65, January.
    2. Tiejun Tong & Yuedong Wang, 2005. "Estimating residual variance in nonparametric regression using least squares," Biometrika, Biometrika Trust, vol. 92(4), pages 821-830, December.
    3. Jichang Du & Anton Schick, 2009. "A covariate-matched estimator of the error variance in nonparametric regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(3), pages 263-285.
    4. Lee H. Dicker, 2014. "Variance estimation in high-dimensional linear models," Biometrika, Biometrika Trust, vol. 101(2), pages 269-284.
    5. Axel Munk & Nicolai Bissantz & Thorsten Wagner & Gudrun Freitag, 2005. "On difference‐based variance estimation in nonparametric regression when the covariate is high dimensional," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 19-41, February.
    6. Patrick Royston & Douglas G. Altman, 1994. "Regression Using Fractional Polynomials of Continuous Covariates: Parsimonious Parametric Modelling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(3), pages 429-453, September.
    7. Spokoiny, Vladimir, 2002. "Variance Estimation for High-Dimensional Regression Models," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 111-133, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhijian Li & Wei Lin, 2020. "Efficient error variance estimation in non‐parametric regression," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 62(4), pages 467-484, December.
    2. Enno Mammen & Jens Perch Nielsen & Michael Scholz & Stefan Sperlich, 2019. "Conditional Variance Forecasts for Long-Term Stock Returns," Risks, MDPI, vol. 7(4), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. WenWu Wang & Lu Lin & Li Yu, 2017. "Optimal variance estimation based on lagged second-order difference in nonparametric regression," Computational Statistics, Springer, vol. 32(3), pages 1047-1063, September.
    2. Zhijian Li & Wei Lin, 2020. "Efficient error variance estimation in non‐parametric regression," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 62(4), pages 467-484, December.
    3. Liitiäinen, Elia & Corona, Francesco & Lendasse, Amaury, 2010. "Residual variance estimation using a nearest neighbor statistic," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 811-823, April.
    4. Jingxin Zhao & Heng Peng & Tao Huang, 2018. "Variance estimation for semiparametric regression models by local averaging," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 453-476, June.
    5. Mendez, Guillermo & Lohr, Sharon, 2011. "Estimating residual variance in random forest regression," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2937-2950, November.
    6. Lucas Janson & Rina Foygel Barber & Emmanuel Candès, 2017. "EigenPrism: inference for high dimensional signal-to-noise ratios," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1037-1065, September.
    7. He, Yi & Jaidee, Sombut & Gao, Jiti, 2023. "Most powerful test against a sequence of high dimensional local alternatives," Journal of Econometrics, Elsevier, vol. 234(1), pages 151-177.
    8. Juhyun Park & Burkhardt Seifert, 2010. "Local additive estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(2), pages 171-191, March.
    9. Peter Hall & Joel L. Horowitz, 2013. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers 29/13, Institute for Fiscal Studies.
    10. Hall, Peter & Yatchew, Adonis, 2010. "Nonparametric least squares estimation in derivative families," Journal of Econometrics, Elsevier, vol. 157(2), pages 362-374, August.
    11. Wenlin Dai & Tiejun Tong, 2014. "Variance estimation in nonparametric regression with jump discontinuities," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(3), pages 530-545, March.
    12. Xin Wang & Lingchen Kong & Liqun Wang, 2022. "Estimation of Error Variance in Regularized Regression Models via Adaptive Lasso," Mathematics, MDPI, vol. 10(11), pages 1-19, June.
    13. Sayanti Guha Majumdar & Anil Rai & Dwijesh Chandra Mishra, 2023. "Estimation of Error Variance in Genomic Selection for Ultrahigh Dimensional Data," Agriculture, MDPI, vol. 13(4), pages 1-16, April.
    14. Yi He & Sombut Jaidee & Jiti Gao, 2020. "Most Powerful Test against High Dimensional Free Alternatives," Monash Econometrics and Business Statistics Working Papers 13/20, Monash University, Department of Econometrics and Business Statistics.
    15. Peter Hall & Joel L. Horowitz, 2012. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers CWP14/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    16. Inder Tecuapetla-Gómez & Axel Munk, 2017. "Autocovariance Estimation in Regression with a Discontinuous Signal and m-Dependent Errors: A Difference-Based Approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(2), pages 346-368, June.
    17. Peter Hall & Joel L. Horowitz, 2012. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers 14/12, Institute for Fiscal Studies.
    18. Paola Gloria Ferrario, 2018. "Partitioning estimation of local variance based on nearest neighbors under censoring," Statistical Papers, Springer, vol. 59(2), pages 423-447, June.
    19. Peter Hall & Joel L. Horowitz, 2013. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers CWP29/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    20. Eckhard Liebscher, 2012. "Model checks for parametric regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 132-155, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:105:y:2017:i:c:p:125-143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.