IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v21y2012i1p132-155.html
   My bibliography  Save this article

Model checks for parametric regression models

Author

Listed:
  • Eckhard Liebscher

Abstract

No abstract is available for this item.

Suggested Citation

  • Eckhard Liebscher, 2012. "Model checks for parametric regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 132-155, March.
  • Handle: RePEc:spr:testjl:v:21:y:2012:i:1:p:132-155
    DOI: 10.1007/s11749-011-0239-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11749-011-0239-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11749-011-0239-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Horowitz, Joel L & Spokoiny, Vladimir G, 2001. "An Adaptive, Rate-Optimal Test of a Parametric Mean-Regression Model against a Nonparametric Alternative," Econometrica, Econometric Society, vol. 69(3), pages 599-631, May.
    2. Enno Mammen, "undated". "Comparing nonparametric versus parametric regression fits," Statistic und Oekonometrie 9205, Humboldt Universitaet Berlin.
    3. Tiejun Tong & Yuedong Wang, 2005. "Estimating residual variance in nonparametric regression using least squares," Biometrika, Biometrika Trust, vol. 92(4), pages 821-830, December.
    4. Axel Munk & Nicolai Bissantz & Thorsten Wagner & Gudrun Freitag, 2005. "On difference‐based variance estimation in nonparametric regression when the covariate is high dimensional," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 19-41, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Hall & Joel L. Horowitz, 2013. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers 29/13, Institute for Fiscal Studies.
    2. Peter Hall & Joel L. Horowitz, 2013. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers CWP29/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Bissantz, Nicolai & Holzmann, Hajo & Pawlak, Mirosław, 2008. "Testing for image symmetries: with application to confocal microscopy," Technical Reports 2008,18, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    4. Anatolyev Stanislav, 2019. "Testing for a Functional Form of Mean Regression in a Fully Parametric Environment," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-20, January.
    5. Denis Chetverikov, 2012. "Testing regression monotonicity in econometric models," CeMMAP working papers CWP35/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2008. "Nonparametric Tests for Treatment Effect Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 389-405, August.
    7. Lopez, O. & Patilea, V., 2009. "Nonparametric lack-of-fit tests for parametric mean-regression models with censored data," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 210-230, January.
    8. Kohtaro Hitomi & Masamune Iwasawa & Yoshihiko Nishiyama, 2018. "Rate Optimal Specification Test When the Number of Instruments is Large," KIER Working Papers 986, Kyoto University, Institute of Economic Research.
    9. WenWu Wang & Lu Lin & Li Yu, 2017. "Optimal variance estimation based on lagged second-order difference in nonparametric regression," Computational Statistics, Springer, vol. 32(3), pages 1047-1063, September.
    10. Peter Hall & Joel L. Horowitz, 2012. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers CWP14/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Christoph Rothe & Dominik Wied, 2013. "Misspecification Testing in a Class of Conditional Distributional Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 314-324, March.
    12. Peter Hall & Joel L. Horowitz, 2012. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers 14/12, Institute for Fiscal Studies.
    13. Kohtaro Hitomi & Masamune Iwasawa & Yoshihiko Nishiyama, 2022. "Optimal minimax rates against nonsmooth alternatives [Optimal testing for additivity in multiple nonparametric regression]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 322-339.
    14. Liitiäinen, Elia & Corona, Francesco & Lendasse, Amaury, 2010. "Residual variance estimation using a nearest neighbor statistic," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 811-823, April.
    15. Wang, WenWu & Yu, Ping, 2017. "Asymptotically optimal differenced estimators of error variance in nonparametric regression," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 125-143.
    16. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    17. Dabo-Niang, Sophie & Francq, Christian & Zakoïan, Jean-Michel, 2010. "Combining Nonparametric and Optimal Linear Time Series Predictions," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1554-1565.
    18. Patrick Saart & Jiti Gao & Nam Hyun Kim, 2014. "Semiparametric methods in nonlinear time series analysis: a selective review," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(1), pages 141-169, March.
    19. Olivier Collier & Arnak S, Dalalyan, 2013. "Curve registration by Nonparametric goodness-of-fit Testing," Working Papers 2013-33, Center for Research in Economics and Statistics.
    20. Bissantz, Nicolai & Holzmann, Hajo, 2007. "Statistical inference for inverse problems," Technical Reports 2007,40, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:21:y:2012:i:1:p:132-155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.