IDEAS home Printed from https://ideas.repec.org/a/bla/rmgtin/v25y2022i1p5-18.html
   My bibliography  Save this article

Using an adaptive network‐based fuzzy inference system model to predict the loss ratio of petroleum insurance in Egypt

Author

Listed:
  • Ahmed A. Khalil
  • Zaiming Liu
  • Attia A. Ali

Abstract

Insurance companies and those interested in developing insurance services seek to use modern mathematical and statistical methods to study further and analyze all the company's corporate internal and external performance indicators. Loss ratio is a vital indicator used to measure performance and predict future losses in insurance companies. Many pivotal processors, such as underwriting and pricing depending on it. Therefore, accurate predictions assist insurance companies in making decisions properly. Thus, this paper aims to use the adaptive network‐based fuzzy inference system (ANFIS) and autoregressive integrated moving average (ARIMA) models in forecasting the loss ratio of petroleum insurance in Misr Insurance Holding Company from 1995 to 2019. We applied many ANFIS models according to ANFIS properties and used the first 21 years (1995–2015), making up the training data set, which represents 85% of the data, as well as the past 4 years (2016–2019). Which are used for the testing stage and represent 15% of the data. Our finding concluded that ANFIS models give more accurate results than ARIMA models in predicting the loss ratio during the investigation by comparing results using predictive accuracy measures.

Suggested Citation

  • Ahmed A. Khalil & Zaiming Liu & Attia A. Ali, 2022. "Using an adaptive network‐based fuzzy inference system model to predict the loss ratio of petroleum insurance in Egypt," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 25(1), pages 5-18, April.
  • Handle: RePEc:bla:rmgtin:v:25:y:2022:i:1:p:5-18
    DOI: 10.1111/rmir.12200
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rmir.12200
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rmir.12200?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Antonella Cappiello, 2020. "The European Insurance Industry," Springer Books, Springer, number 978-3-030-43142-6, December.
    2. Akkoç, Soner, 2012. "An empirical comparison of conventional techniques, neural networks and the three stage hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring analysis: The case of Turkish cred," European Journal of Operational Research, Elsevier, vol. 222(1), pages 168-178.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enrico Supino & Nicola Piras, 2022. "Le performance dei modelli di credit scoring in contesti di forte instabilit? macroeconomica: il ruolo delle Reti Neurali Artificiali," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2022(2), pages 41-61.
    2. Li, Yibei & Wang, Ximei & Djehiche, Boualem & Hu, Xiaoming, 2020. "Credit scoring by incorporating dynamic networked information," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1103-1112.
    3. Gunnarsson, Björn Rafn & vanden Broucke, Seppe & Baesens, Bart & Óskarsdóttir, María & Lemahieu, Wilfried, 2021. "Deep learning for credit scoring: Do or don’t?," European Journal of Operational Research, Elsevier, vol. 295(1), pages 292-305.
    4. Aneta Dzik-Walczak & Mateusz Heba, 2019. "A comparison of credit scoring techniques in Peer-to-Peer lending," Working Papers 2019-16, Faculty of Economic Sciences, University of Warsaw.
    5. Fahmida E. Moula & Chi Guotai & Mohammad Zoynul Abedin, 2017. "Credit default prediction modeling: an application of support vector machine," Risk Management, Palgrave Macmillan, vol. 19(2), pages 158-187, May.
    6. Yuan, Kunpeng & Chi, Guotai & Zhou, Ying & Yin, Hailei, 2022. "A novel two-stage hybrid default prediction model with k-means clustering and support vector domain description," Research in International Business and Finance, Elsevier, vol. 59(C).
    7. Salima Smiti & Makram Soui, 2020. "Bankruptcy Prediction Using Deep Learning Approach Based on Borderline SMOTE," Information Systems Frontiers, Springer, vol. 22(5), pages 1067-1083, October.
    8. Teply, Petr & Polena, Michal, 2020. "Best classification algorithms in peer-to-peer lending," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    9. Marco Locurcio & Francesco Tajani & Pierluigi Morano & Debora Anelli & Benedetto Manganelli, 2021. "Credit Risk Management of Property Investments through Multi-Criteria Indicators," Risks, MDPI, vol. 9(6), pages 1-23, June.
    10. Dumitrescu, Elena & Hué, Sullivan & Hurlin, Christophe & Tokpavi, Sessi, 2022. "Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1178-1192.
    11. Ting Sun & Miklos A. Vasarhelyi, 2018. "Predicting credit card delinquencies: An application of deep neural networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 25(4), pages 174-189, October.
    12. Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
    13. Brad S. Trinkle & Amelia A. Baldwin, 2016. "Research Opportunities for Neural Networks: The Case for Credit," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 23(3), pages 240-254, July.
    14. Kizilaslan, Recep & Freund, Steven & Iseri, Ali, 2016. "A data analytic approach to forecasting daily stock returns in an emerging marketAuthor-Name: Oztekin, Asil," European Journal of Operational Research, Elsevier, vol. 253(3), pages 697-710.
    15. Christer Carlsson, 2018. "Decision analytics mobilized with digital coaching," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 25(1), pages 3-17, January.
    16. J. Lara‐Rubio & A. Blanco‐Oliver & R. Pino‐Mejías, 2017. "Promoting Entrepreneurship at the Base of the Social Pyramid via Pricing Systems: A case Study," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 24(1), pages 12-28, January.
    17. Lobna Abid & Afif Masmoudi & Sonia Zouari-Ghorbel, 2018. "The Consumer Loan’s Payment Default Predictive Model: an Application of the Logistic Regression and the Discriminant Analysis in a Tunisian Commercial Bank," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 9(3), pages 948-962, September.
    18. Elena Ivona DUMITRESCU & Sullivan HUE & Christophe HURLIN & Sessi TOKPAVI, 2020. "Machine Learning or Econometrics for Credit Scoring: Let’s Get the Best of Both Worlds," LEO Working Papers / DR LEO 2839, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    19. Marco Corazza & Giovanni Fasano & Stefania Funari & Riccardo Gusso, 2021. "MURAME parameter setting for creditworthiness evaluation: data-driven optimization," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(1), pages 295-339, June.
    20. Asil Oztekin, 0. "Information fusion-based meta-classification predictive modeling for ETF performance," Information Systems Frontiers, Springer, vol. 0, pages 1-16.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:rmgtin:v:25:y:2022:i:1:p:5-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1098-1616 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.