IDEAS home Printed from https://ideas.repec.org/a/bla/reesec/v52y2024i5p1308-1339.html
   My bibliography  Save this article

Combining machine learning and econometrics: Application to commercial real estate prices

Author

Listed:
  • Marc Francke
  • Alex van de Minne

Abstract

In this article, we combine a random effects model with different machine learning algorithms via an iterative process when predicting commercial real estate asset values. Using both random effects and machine learning allows us to combine the strengths of both approaches. The random effects will be used to estimate a common trend, property type trends, location value, and property random effects for properties that sold more than once. The machine learning algorithm will fit the observed characteristics (features) in a complex nonlinear fashion. The model is applied to a small sample of 2652 transactions in Phoenix (AZ) between 2001 and 2021. We only observe a limited number of property characteristics. The average out‐of‐sample MAPE is below 11%, which is as good or even better compared to the average appraisal error found in literature. The out‐of‐sample MAPE is even 9% for properties that sold more than once in the training set. In addition, our model provides indexes and locational heatmaps. These have their own uses and cannot be obtained with standard machine learning algorithms.

Suggested Citation

  • Marc Francke & Alex van de Minne, 2024. "Combining machine learning and econometrics: Application to commercial real estate prices," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 52(5), pages 1308-1339, September.
  • Handle: RePEc:bla:reesec:v:52:y:2024:i:5:p:1308-1339
    DOI: 10.1111/1540-6229.12483
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1540-6229.12483
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1540-6229.12483?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:reesec:v:52:y:2024:i:5:p:1308-1339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/areueea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.