IDEAS home Printed from https://ideas.repec.org/a/bla/reesec/v52y2024i5p1308-1339.html
   My bibliography  Save this article

Combining machine learning and econometrics: Application to commercial real estate prices

Author

Listed:
  • Marc Francke
  • Alex van de Minne

Abstract

In this article, we combine a random effects model with different machine learning algorithms via an iterative process when predicting commercial real estate asset values. Using both random effects and machine learning allows us to combine the strengths of both approaches. The random effects will be used to estimate a common trend, property type trends, location value, and property random effects for properties that sold more than once. The machine learning algorithm will fit the observed characteristics (features) in a complex nonlinear fashion. The model is applied to a small sample of 2652 transactions in Phoenix (AZ) between 2001 and 2021. We only observe a limited number of property characteristics. The average out‐of‐sample MAPE is below 11%, which is as good or even better compared to the average appraisal error found in literature. The out‐of‐sample MAPE is even 9% for properties that sold more than once in the training set. In addition, our model provides indexes and locational heatmaps. These have their own uses and cannot be obtained with standard machine learning algorithms.

Suggested Citation

  • Marc Francke & Alex van de Minne, 2024. "Combining machine learning and econometrics: Application to commercial real estate prices," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 52(5), pages 1308-1339, September.
  • Handle: RePEc:bla:reesec:v:52:y:2024:i:5:p:1308-1339
    DOI: 10.1111/1540-6229.12483
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1540-6229.12483
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1540-6229.12483?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marc Francke & Alex Van de Minne, 2021. "Modeling unobserved heterogeneity in hedonic price models," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 49(4), pages 1315-1339, December.
    2. Yongheng Deng & John Quigley, 2008. "Index Revision, House Price Risk, and the Market for House Price Derivatives," The Journal of Real Estate Finance and Economics, Springer, vol. 37(3), pages 191-209, October.
    3. Cannon, Susanne & Col, Rebel A., 2011. "How accurate are commercial-real-estate appraisals? evidence from 25 years of NCREIF sales data," MPRA Paper 32589, University Library of Munich, Germany.
    4. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    5. Albert Saiz, 2010. "The Geographic Determinants of Housing Supply," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 125(3), pages 1253-1296.
    6. Felix Lorenz & Jonas Willwersch & Marcelo Cajias & Franz Fuerst, 2023. "Interpretable machine learning for real estate market analysis," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 51(5), pages 1178-1208, September.
    7. Alex van de Minne & Marc Francke & David Geltner, 2022. "Forecasting US Commercial Property Price Indexes Using Dynamic Factor Models," Journal of Real Estate Research, Taylor & Francis Journals, vol. 44(1), pages 29-55, January.
    8. Eric Clapham & Peter Englund & John M. Quigley & Christian L. Redfearn, 2006. "Revisiting the Past and Settling the Score: Index Revision for House Price Derivatives," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 34(2), pages 275-302, June.
    9. Marc Francke & Alex Van De Minne, 2022. "Daily appraisal of commercial real estate a new mixed frequency approach," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 50(5), pages 1257-1281, September.
    10. Juergen Deppner & Marcelo Cajias, 2022. "Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A Spatial Cross-Validation Approach," ERES 2022_84, European Real Estate Society (ERES).
    11. R. Kelley Pace & Darren Hayunga, 2020. "Examining the Information Content of Residuals from Hedonic and Spatial Models Using Trees and Forests," The Journal of Real Estate Finance and Economics, Springer, vol. 60(1), pages 170-180, February.
    12. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    13. Susanne, Cannon & Rebel, Cole, 2011. "How Accurate Are Commercial Real Estate Appraisals? Evidence from 25 Years of NCREIF Sales Data," MPRA Paper 52621, University Library of Munich, Germany, revised 25 May 2011.
    14. Alex Minne & Marc Francke & David Geltner & Robert White, 2020. "Using Revisions as a Measure of Price Index Quality in Repeat-Sales Models," The Journal of Real Estate Finance and Economics, Springer, vol. 60(4), pages 514-553, May.
    15. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
    16. Guo, Xiaoyang & Zheng, Siqi & Geltner, David & Liu, Hongyu, 2014. "A new approach for constructing home price indices: The pseudo repeat sales model and its application in China," Journal of Housing Economics, Elsevier, vol. 25(C), pages 20-38.
    17. Elaine M. Worzala & Margarita Lenk & Ana Silva, 1995. "An Exploration of Neural Networks and Its Application to Real Estate Valuation," Journal of Real Estate Research, American Real Estate Society, vol. 10(2), pages 185-202.
    18. Steven Peterson & Albert Flanagan, 2009. "Neural Network Hedonic Pricing Models in Mass Real Estate Appraisal," Journal of Real Estate Research, Taylor & Francis Journals, vol. 31(2), pages 147-164, January.
    19. Marc K. Francke & Alex Minne, 2017. "The Hierarchical Repeat Sales Model for Granular Commercial Real Estate and Residential Price Indices," The Journal of Real Estate Finance and Economics, Springer, vol. 55(4), pages 511-532, November.
    20. Steven Peterson & Albert B. Flanagan, 2009. "Neural Network Hedonic Pricing Models in Mass Real Estate Appraisal," Journal of Real Estate Research, American Real Estate Society, vol. 31(2), pages 147-164.
    21. Marc K. Francke & Gerjan A. Vos, 2004. "The Hierarchical Trend Model for Property Valuation and Local Price Indices," The Journal of Real Estate Finance and Economics, Springer, vol. 28(2_3), pages 179-208, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felipe D. Calainho & Alex M. Minne & Marc K. Francke, 2024. "A Machine Learning Approach to Price Indices: Applications in Commercial Real Estate," The Journal of Real Estate Finance and Economics, Springer, vol. 68(4), pages 624-653, May.
    2. Juergen Deppner & Marcelo Cajias, 2024. "Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A Spatial Cross-Validation Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 68(2), pages 235-273, February.
    3. Alex Minne & Marc Francke & David Geltner & Robert White, 2020. "Using Revisions as a Measure of Price Index Quality in Repeat-Sales Models," The Journal of Real Estate Finance and Economics, Springer, vol. 60(4), pages 514-553, May.
    4. Zhu, Bing & van Dijk, Dorinth & Lizieri, Colin, 2024. "Price diffusion across international private commercial real estate markets," Journal of International Money and Finance, Elsevier, vol. 140(C).
    5. Marc Francke & Alex Van De Minne, 2022. "Daily appraisal of commercial real estate a new mixed frequency approach," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 50(5), pages 1257-1281, September.
    6. Reza Amindarbari & Perver Baran & Ross K. Meentemeyer, 2023. "Spatially disaggregated simulation of interactions between home prices and land-use change," Environment and Planning B, , vol. 50(7), pages 1879-1897, September.
    7. Marc Francke & Alex Van de Minne, 2021. "Modeling unobserved heterogeneity in hedonic price models," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 49(4), pages 1315-1339, December.
    8. Marc K. Francke & Alex Minne, 2017. "The Hierarchical Repeat Sales Model for Granular Commercial Real Estate and Residential Price Indices," The Journal of Real Estate Finance and Economics, Springer, vol. 55(4), pages 511-532, November.
    9. Dragana Cvijanović & Stanimira Milcheva & Alex Minne, 2022. "Preferences of Institutional Investors in Commercial Real Estate," The Journal of Real Estate Finance and Economics, Springer, vol. 65(2), pages 321-359, August.
    10. Lyndsey Rolheiser & Dorinth van Dijk & Alex van de Minne, 2018. "Does Housing Vintage Matter? Exploring the Historic City Center of Amsterdam," DNB Working Papers 617, Netherlands Central Bank, Research Department.
    11. Sayag, Doron & Ben-hur, Dano & Pfeffermann, Danny, 2022. "Reducing revisions in hedonic house price indices by the use of nowcasts," International Journal of Forecasting, Elsevier, vol. 38(1), pages 253-266.
    12. Sophie-Charlotte Klose & Johannes Lederer, 2020. "A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics," Papers 2006.12296, arXiv.org, revised Jun 2020.
    13. Akash Malhotra, 2018. "A hybrid econometric-machine learning approach for relative importance analysis: Prioritizing food policy," Papers 1806.04517, arXiv.org, revised Aug 2020.
    14. Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2017. "Econom\'etrie et Machine Learning," Papers 1708.06992, arXiv.org, revised Mar 2018.
    15. Crespo, Cristian, 2020. "Two become one: improving the targeting of conditional cash transfers with a predictive model of school dropout," LSE Research Online Documents on Economics 123139, London School of Economics and Political Science, LSE Library.
    16. Lidia Ceriani & Sergio Olivieri & Marco Ranzani, 2023. "Housing, imputed rent, and household welfare," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 21(1), pages 131-168, March.
    17. Croux, Christophe & Jagtiani, Julapa & Korivi, Tarunsai & Vulanovic, Milos, 2020. "Important factors determining Fintech loan default: Evidence from a lendingclub consumer platform," Journal of Economic Behavior & Organization, Elsevier, vol. 173(C), pages 270-296.
    18. Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    19. Jens Ludwig & Sendhil Mullainathan, 2021. "Fragile Algorithms and Fallible Decision-Makers: Lessons from the Justice System," Journal of Economic Perspectives, American Economic Association, vol. 35(4), pages 71-96, Fall.
    20. Yongsheng Jiang & Dong Zhao & Andrew Sanderford & Jing Du, 2018. "Effects of Bank Lending on Urban Housing Prices for Sustainable Development: A Panel Analysis of Chinese Cities," Sustainability, MDPI, vol. 10(3), pages 1-16, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:reesec:v:52:y:2024:i:5:p:1308-1339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/areueea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.