IDEAS home Printed from https://ideas.repec.org/a/alu/journl/v2y2024i26p3.html
   My bibliography  Save this article

AUTOMATED EVALUATION MODELS in real estate market: A comparative analysis between linear regression and XGBoost

Author

Listed:
  • Silviu-IonuÈ› BÄ‚BÈšAN

    (Accounting andAudit Department, Faculty of Economics and BusinessAdministration, BabeÅŸ-Bolyai University)

Abstract

The dynamic trend of the real estate market, as well as the rapid digitization process that has taken place recently, has created the need to identify techniques for automated property price valuation. This article aims to eliminate the problems of subjectivity and high resource consumption of traditional valuation by analyzing the practical implementation of automated valuation methods in the real estate market. Thus, the article performs a comparative analysis between classical prediction methods, such as linear regression, and complex prediction algorithms, such as XGBoost, which can be applied in real estate value prediction. By analyzing the accuracy of predictions on a sample of apartments in Cluj-Napoca, Romania, the study compares the two automatic valuation methods and draws the lines of their implementation. The results of this study can be used for the development of automatic valuation techniques at a global level.

Suggested Citation

  • Silviu-IonuÈ› BÄ‚BÈšAN, 2024. "AUTOMATED EVALUATION MODELS in real estate market: A comparative analysis between linear regression and XGBoost," Annales Universitatis Apulensis Series Oeconomica, Faculty of Sciences, "1 Decembrie 1918" University, Alba Iulia, vol. 2(26), pages 1-3.
  • Handle: RePEc:alu:journl:v:2:y:2024:i:26:p:3
    as

    Download full text from publisher

    File URL: http://oeconomica.uab.ro/upload/lucrari/2620242/03.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert J. Shiller, 2015. "Irrational Exuberance," Economics Books, Princeton University Press, edition 3, number 10421.
    2. Nghiep Nguyen & Al Cripps, 2001. "Predicting Housing Value: A Comparison of Multiple Regression Analysis and Artificial Neural Networks," Journal of Real Estate Research, Taylor & Francis Journals, vol. 22(3), pages 313-336, January.
    3. David Tretton, 2007. "Where is the world of property valuation for taxation purposes going?," Journal of Property Investment & Finance, Emerald Group Publishing Limited, vol. 25(5), pages 482-514, August.
    4. Steven Bourassa & Eva Cantoni & Martin Hoesli, 2010. "Predicting House Prices with Spatial Dependence: A Comparison of Alternative Methods," Journal of Real Estate Research, Taylor & Francis Journals, vol. 32(2), pages 139-160, January.
    5. Elli Pagourtzi & Vassilis Assimakopoulos & Thomas Hatzichristos & Nick French, 2003. "Real estate appraisal: a review of valuation methods," Journal of Property Investment & Finance, Emerald Group Publishing Limited, vol. 21(4), pages 383-401, August.
    6. Michel Glower & Donald R. Haurin & Patric H. Hendershott, 1998. "Selling Time and Selling Price: The Influence of Seller Motivation," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 26(4), pages 719-740, December.
    7. W.J. McCluskey & M. McCord & P.T. Davis & M. Haran & D. McIlhatton, 2013. "Prediction accuracy in mass appraisal: a comparison of modern approaches," Journal of Property Research, Taylor & Francis Journals, vol. 30(4), pages 239-265, December.
    8. William McCluskey & Sarabjot Anand, 1999. "The application of intelligent hybrid techniques for the mass appraisal of residential properties," Journal of Property Investment & Finance, Emerald Group Publishing Limited, vol. 17(3), pages 218-239, August.
    9. Carmona, Pedro & Climent, Francisco & Momparler, Alexandre, 2019. "Predicting failure in the U.S. banking sector: An extreme gradient boosting approach," International Review of Economics & Finance, Elsevier, vol. 61(C), pages 304-323.
    10. Stephen A. Samaha & Wagner A. Kamakura, 2008. "Assessing the Market Value of Real Estate Property with a Geographically Weighted Stochastic Frontier Model," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 36(4), pages 717-751, December.
    11. Elaine M. Worzala & Margarita Lenk & Ana Silva, 1995. "An Exploration of Neural Networks and Its Application to Real Estate Valuation," Journal of Real Estate Research, American Real Estate Society, vol. 10(2), pages 185-202.
    12. Steven Peterson & Albert Flanagan, 2009. "Neural Network Hedonic Pricing Models in Mass Real Estate Appraisal," Journal of Real Estate Research, Taylor & Francis Journals, vol. 31(2), pages 147-164, January.
    13. Steven Peterson & Albert B. Flanagan, 2009. "Neural Network Hedonic Pricing Models in Mass Real Estate Appraisal," Journal of Real Estate Research, American Real Estate Society, vol. 31(2), pages 147-164.
    14. Nghiep Nguyen & Al Cripps, 2001. "Predicting Housing Value: A Comparison of Multiple Regression Analysis and Artificial Neural Networks," Journal of Real Estate Research, American Real Estate Society, vol. 22(3), pages 313-336.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juergen Deppner & Marcelo Cajias, 2024. "Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A Spatial Cross-Validation Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 68(2), pages 235-273, February.
    2. Jose Torres-Pruñonosa & Pablo García-Estévez & Josep Maria Raya & Camilo Prado-Román, 2022. "How on Earth Did Spanish Banking Sell the Housing Stock?," SAGE Open, , vol. 12(1), pages 21582440221, March.
    3. Reza Amindarbari & Perver Baran & Ross K. Meentemeyer, 2023. "Spatially disaggregated simulation of interactions between home prices and land-use change," Environment and Planning B, , vol. 50(7), pages 1879-1897, September.
    4. Jose A. Rodriguez-Serrano, 2025. "Prototype-based learning for real estate valuation: a machine learning model that explains prices," Annals of Operations Research, Springer, vol. 344(1), pages 287-311, January.
    5. Tien Foo Sing & Jesse Jingye Yang & Shi Ming Yu, 2022. "Boosted Tree Ensembles for Artificial Intelligence Based Automated Valuation Models (AI-AVM)," The Journal of Real Estate Finance and Economics, Springer, vol. 65(4), pages 649-674, November.
    6. Marc Francke & Alex van de Minne, 2024. "Combining machine learning and econometrics: Application to commercial real estate prices," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 52(5), pages 1308-1339, September.
    7. Mehmet Emin Tabar & Aziz Sisman & Yasemin Sisman, 2023. "A Real Estate Appraisal Model with Artificial Neural Networks and Fuzzy Logic: A Local Case Study of Samsun City," International Real Estate Review, Global Social Science Institute, vol. 26(4), pages 569-585.
    8. Jose Torres-Pruñonosa & Pablo García-Estévez & Camilo Prado-Román, 2021. "Artificial Neural Network, Quantile and Semi-Log Regression Modelling of Mass Appraisal in Housing," Mathematics, MDPI, vol. 9(7), pages 1-16, April.
    9. repec:ire:issued:v:26:n:04:2023:p:565-581 is not listed on IDEAS
    10. Helga Flavia Tothăzan & Adela Deaconu, 2020. "Neuronal Network Artificial Model for Real Estate Appraisal: Logic, controversies, and utility for the Romanian context," Ovidius University Annals, Economic Sciences Series, Ovidius University of Constantza, Faculty of Economic Sciences, vol. 0(2), pages 1093-1100, December.
    11. Maurizio d’Amato, 2007. "Comparing Rough Set Theory with Multiple Regression Analysis as Automated Valuation Methodologies," International Real Estate Review, Global Social Science Institute, vol. 10(2), pages 42-65.
    12. Manuel Landajo & Celia Bilbao & Amelia Bilbao, 2012. "Nonparametric neural network modeling of hedonic prices in the housing market," Empirical Economics, Springer, vol. 42(3), pages 987-1009, June.
    13. Füss, Roland & Koller, Jan A., 2016. "The role of spatial and temporal structure for residential rent predictions," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1352-1368.
    14. Camilo Serrano & Martin Hoesli, 2010. "Are Securitized Real Estate Returns more Predictable than Stock Returns?," The Journal of Real Estate Finance and Economics, Springer, vol. 41(2), pages 170-192, August.
    15. Craig Ellis & Patrick J. Wilson & Ralf Zurbruegg, 2007. "Real Estate ‘Value’ Stocks and International Diversification," Journal of Property Research, Taylor & Francis Journals, vol. 24(3), pages 265-287, September.
    16. Gang-Zhi Fan & Seow Eng Ong & Hian Chye Koh, 2006. "Determinants of House Price: A Decision Tree Approach," Urban Studies, Urban Studies Journal Limited, vol. 43(12), pages 2301-2315, November.
    17. Sagi, Alon & Gal, Avigdor & Broitman, Dani & Czamanski, Daniel, 2024. "An unsupervised machine learning approach to the spatial analysis of urban systems through neighbourhoods’ dynamics," Land Use Policy, Elsevier, vol. 144(C).
    18. Kirill Solovev & Nicolas Prollochs, 2021. "Integrating Floor Plans into Hedonic Models for Rent Price Appraisal," Papers 2102.08162, arXiv.org.
    19. Felipe D. Calainho & Alex M. Minne & Marc K. Francke, 2024. "A Machine Learning Approach to Price Indices: Applications in Commercial Real Estate," The Journal of Real Estate Finance and Economics, Springer, vol. 68(4), pages 624-653, May.
    20. Sebastian Gnat & Mariusz Doszyn, 2020. "Parametric and Non-parametric Methods in Mass Appraisal on Poorly Developed Real Estate Markets," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 1230-1245.
    21. Jun Kang & Hyun Jun Lee & Seung Hwan Jeong & Hee Soo Lee & Kyong Joo Oh, 2020. "Developing a Forecasting Model for Real Estate Auction Prices Using Artificial Intelligence," Sustainability, MDPI, vol. 12(7), pages 1-19, April.

    More about this item

    Keywords

    real estate; mass appraisals; automated appraisal; valuation standards.;
    All these keywords.

    JEL classification:

    • C88 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Other Computer Software
    • R31 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location - - - Housing Supply and Markets
    • R32 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location - - - Other Spatial Production and Pricing Analysis
    • R30 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:alu:journl:v:2:y:2024:i:26:p:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dan-Constantin Danuletiu (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.