IDEAS home Printed from https://ideas.repec.org/a/kap/jrefec/v68y2024i4d10.1007_s11146-022-09893-1.html
   My bibliography  Save this article

A Machine Learning Approach to Price Indices: Applications in Commercial Real Estate

Author

Listed:
  • Felipe D. Calainho

    (Universiteit van Amsterdam)

  • Alex M. Minne

    (University of Connecticut)

  • Marc K. Francke

    (Universiteit van Amsterdam
    Ortec Finance)

Abstract

This article presents a model agnostic methodology for producing property price indices. The motivation to develop this methodology is to include non-linear and non-parametric models, such as Machine Learning (ML), in the pool of algorithms to produce price indices. The key innovation is the use of individual out-of-time prediction errors to measure price changes. The data used in this study consist of 29,998 commercial real estate transactions in New York, in the period 2000–2019. The results indicate that the prediction accuracy is higher for the ML models compared to linear models. On the other hand, ML algorithms depend more on the data used for calibration; they produce less stable results when applied to small samples and may exhibit estimation bias. Hence, measures to reduce or eliminate bias need to be implemented, taking into consideration the bias and variance trade-off.

Suggested Citation

  • Felipe D. Calainho & Alex M. Minne & Marc K. Francke, 2024. "A Machine Learning Approach to Price Indices: Applications in Commercial Real Estate," The Journal of Real Estate Finance and Economics, Springer, vol. 68(4), pages 624-653, May.
  • Handle: RePEc:kap:jrefec:v:68:y:2024:i:4:d:10.1007_s11146-022-09893-1
    DOI: 10.1007/s11146-022-09893-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11146-022-09893-1
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11146-022-09893-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marc Francke & Alex Van de Minne, 2021. "Modeling unobserved heterogeneity in hedonic price models," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 49(4), pages 1315-1339, December.
    2. repec:eme:jpvi00:14635789810205128 is not listed on IDEAS
    3. Adam D. Nowak & Patrick S. Smith, 2020. "Quality-Adjusted House Price Indexes," American Economic Review: Insights, American Economic Association, vol. 2(3), pages 339-356, September.
    4. Yongheng Deng & John Quigley, 2008. "Index Revision, House Price Risk, and the Market for House Price Derivatives," The Journal of Real Estate Finance and Economics, Springer, vol. 37(3), pages 191-209, October.
    5. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    6. Haas, George Casper, 1922. "A Statistical Analysis of Farm Sales in Blue Earth County, Minnesota, as a Basis for Farm Land Appraisal," Faculty and Alumni Dissertations 184329, University of Minnesota, Department of Applied Economics.
    7. Robert J. Hill & Daniel Melser, 2008. "Hedonic Imputation And The Price Index Problem: An Application To Housing," Economic Inquiry, Western Economic Association International, vol. 46(4), pages 593-609, October.
    8. Kelvin J. Lancaster, 1966. "A New Approach to Consumer Theory," Journal of Political Economy, University of Chicago Press, vol. 74(2), pages 132-132.
    9. Stephen Malpezzi, "undated". "Hedonic Pricing Models: A Selective and Applied Review," Wisconsin-Madison CULER working papers 02-05, University of Wisconsin Center for Urban Land Economic Research.
    10. Daniel P. McMillen & Jonathan Dombrow, 2001. "A Flexible Fourier Approach to Repeat Sales Price Indexes," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 29(2), pages 207-225.
    11. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
    12. Guo, Xiaoyang & Zheng, Siqi & Geltner, David & Liu, Hongyu, 2014. "A new approach for constructing home price indices: The pseudo repeat sales model and its application in China," Journal of Housing Economics, Elsevier, vol. 25(C), pages 20-38.
    13. Elaine M. Worzala & Margarita Lenk & Ana Silva, 1995. "An Exploration of Neural Networks and Its Application to Real Estate Valuation," Journal of Real Estate Research, American Real Estate Society, vol. 10(2), pages 185-202.
    14. Marc K. Francke & Alex Minne, 2017. "The Hierarchical Repeat Sales Model for Granular Commercial Real Estate and Residential Price Indices," The Journal of Real Estate Finance and Economics, Springer, vol. 55(4), pages 511-532, November.
    15. Steven Peterson & Albert B. Flanagan, 2009. "Neural Network Hedonic Pricing Models in Mass Real Estate Appraisal," Journal of Real Estate Research, American Real Estate Society, vol. 31(2), pages 147-164.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuel Landajo & Celia Bilbao & Amelia Bilbao, 2012. "Nonparametric neural network modeling of hedonic prices in the housing market," Empirical Economics, Springer, vol. 42(3), pages 987-1009, June.
    2. Jose Torres-Pruñonosa & Pablo García-Estévez & Josep Maria Raya & Camilo Prado-Román, 2022. "How on Earth Did Spanish Banking Sell the Housing Stock?," SAGE Open, , vol. 12(1), pages 21582440221, March.
    3. Alex Minne & Marc Francke & David Geltner & Robert White, 2020. "Using Revisions as a Measure of Price Index Quality in Repeat-Sales Models," The Journal of Real Estate Finance and Economics, Springer, vol. 60(4), pages 514-553, May.
    4. Jose Torres-Pruñonosa & Pablo García-Estévez & Camilo Prado-Román, 2021. "Artificial Neural Network, Quantile and Semi-Log Regression Modelling of Mass Appraisal in Housing," Mathematics, MDPI, vol. 9(7), pages 1-16, April.
    5. William Cheung & Lewen Guo & Yuichiro Kawaguchi, 2021. "Automated valuation model for residential rental markets: evidence from Japan," Journal of Spatial Econometrics, Springer, vol. 2(1), pages 1-34, December.
    6. Beatriz Larraz, 2011. "An Expert System for Online Residential Properties Valuation," Review of Economics & Finance, Better Advances Press, Canada, vol. 1, pages 69-82, April.
    7. Juergen Deppner & Marcelo Cajias, 2024. "Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A Spatial Cross-Validation Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 68(2), pages 235-273, February.
    8. Lidia Ceriani & Sergio Olivieri & Marco Ranzani, 2023. "Housing, imputed rent, and household welfare," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 21(1), pages 131-168, March.
    9. Tien Foo Sing & Jesse Jingye Yang & Shi Ming Yu, 2022. "Boosted Tree Ensembles for Artificial Intelligence Based Automated Valuation Models (AI-AVM)," The Journal of Real Estate Finance and Economics, Springer, vol. 65(4), pages 649-674, November.
    10. Hans Wolfgang Brachinger & Michael Beer & Olivier Schöni, 2018. "A formal framework for hedonic elementary price indices," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(1), pages 67-93, January.
    11. Liang Peng, 2020. "Benchmarking Local Commercial Real Estate Returns: Statistics Meets Economics," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 48(4), pages 1004-1029, December.
    12. Daniel Melser, 2023. "Selection Bias in Housing Price Indexes: The Characteristics Repeat Sales Approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 623-637, June.
    13. José Armando Cobián Álvarez & Budy P. Resosudarmo, 2019. "The cost of floods in developing countries’ megacities: a hedonic price analysis of the Jakarta housing market, Indonesia," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(4), pages 555-577, October.
    14. Robert J. Hill & Alicia N. Rambaldi & Michael Scholz, 2021. "Higher frequency hedonic property price indices: a state-space approach," Empirical Economics, Springer, vol. 61(1), pages 417-441, July.
    15. Rosane Hungria-Gunnelin, 2013. "Impact of Number of Bidders on Sale Price of Auctioned Condominium Apartments in Stockholm," International Real Estate Review, Global Social Science Institute, vol. 16(3), pages 274-295.
    16. Zhu, Bing & van Dijk, Dorinth & Lizieri, Colin, 2024. "Price diffusion across international private commercial real estate markets," Journal of International Money and Finance, Elsevier, vol. 140(C).
    17. Marc Francke & Alex Van De Minne, 2022. "Daily appraisal of commercial real estate a new mixed frequency approach," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 50(5), pages 1257-1281, September.
    18. Rubesam, Alexandre, 2022. "Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market," Emerging Markets Review, Elsevier, vol. 51(PB).
    19. Çağlayan Ebru & Arikan Eban, 2011. "Determinants of house prices in Istanbul: a quantile regression approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 45(2), pages 305-317, February.
    20. Jos魍ar𨁍ontero-Lorenzo & Beatriz Larraz-Iribas, 2012. "Space-time approach to commercial property prices valuation," Applied Economics, Taylor & Francis Journals, vol. 44(28), pages 3705-3715, October.

    More about this item

    Keywords

    Commercial real estate; Price indices; Machine learning;
    All these keywords.

    JEL classification:

    • R33 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location - - - Nonagricultural and Nonresidential Real Estate Markets
    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jrefec:v:68:y:2024:i:4:d:10.1007_s11146-022-09893-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.