IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1510.07030.html
   My bibliography  Save this paper

Law invariant risk measures and information divergences

Author

Listed:
  • Daniel Lacker

Abstract

A one-to-one correspondence is drawn between law invariant risk measures and divergences, which we define as functionals of pairs of probability measures on arbitrary standard Borel spaces satisfying a few natural properties. Divergences include many classical information divergence measures, such as relative entropy and $f$-divergences. Several properties of divergence and their duality with law invariant risk measures are developed, most notably relating their chain rules or additivity properties with certain notions of time consistency for dynamic law invariant risk measures known as acceptance and rejection consistency. These properties are linked also to a peculiar property of the acceptance sets on the level of distributions, analogous to results of Weber on weak acceptance and rejection consistency. Finally, the examples of shortfall risk measures and optimized certainty equivalents are discussed in some detail, and it is shown that the relative entropy is essentially the only divergence satisfying the chain rule.

Suggested Citation

  • Daniel Lacker, 2015. "Law invariant risk measures and information divergences," Papers 1510.07030, arXiv.org, revised Jun 2016.
  • Handle: RePEc:arx:papers:1510.07030
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1510.07030
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexander Shapiro, 2013. "On Kusuoka Representation of Law Invariant Risk Measures," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 142-152, February.
    2. Riedel, Frank, 2004. "Dynamic coherent risk measures," Stochastic Processes and their Applications, Elsevier, vol. 112(2), pages 185-200, August.
    3. Elyès Jouini & Walter Schachermayer & Nizar Touzi, 2006. "Law Invariant Risk Measures Have the Fatou Property," Post-Print halshs-00176522, HAL.
    4. Detlefsen, Kai & Scandolo, Giacomo, 2005. "Conditional and dynamic convex risk measures," SFB 649 Discussion Papers 2005-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. Kai Detlefsen & Giacomo Scandolo, 2005. "Conditional and dynamic convex risk measures," Finance and Stochastics, Springer, vol. 9(4), pages 539-561, October.
    6. Stefan Weber, 2006. "Distribution‐Invariant Risk Measures, Information, And Dynamic Consistency," Mathematical Finance, Wiley Blackwell, vol. 16(2), pages 419-441, April.
    7. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    8. Frittelli, Marco & Rosazza Gianin, Emanuela, 2002. "Putting order in risk measures," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1473-1486, July.
    9. Patrick Cheridito & Michael Kupper, 2011. "Composition Of Time-Consistent Dynamic Monetary Risk Measures In Discrete Time," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 137-162.
    10. Roorda, Berend & Schumacher, J.M., 2007. "Time consistency conditions for acceptability measures, with an application to Tail Value at Risk," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 209-230, March.
    11. Volker Krätschmer & Alexander Schied & Henryk Zähle, 2014. "Comparative and qualitative robustness for law-invariant risk measures," Finance and Stochastics, Springer, vol. 18(2), pages 271-295, April.
    12. Volker Kratschmer & Alexander Schied & Henryk Zahle, 2012. "Comparative and qualitative robustness for law-invariant risk measures," Papers 1204.2458, arXiv.org, revised Jan 2014.
    13. Sina Tutsch, 2008. "Update rules for convex risk measures," Quantitative Finance, Taylor & Francis Journals, vol. 8(8), pages 833-843.
    14. Aharon Ben-Tal & Marc Teboulle, 1986. "Expected Utility, Penalty Functions, and Duality in Stochastic Nonlinear Programming," Management Science, INFORMS, vol. 32(11), pages 1445-1466, November.
    15. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    16. repec:dau:papers:123456789/342 is not listed on IDEAS
    17. Daniel Lacker, 2015. "Liquidity, risk measures, and concentration of measure," Papers 1510.07033, arXiv.org, revised Oct 2015.
    18. David Heath & Hyejin Ku, 2004. "Pareto Equilibria with coherent measures of risk," Mathematical Finance, Wiley Blackwell, vol. 14(2), pages 163-172, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Lacker, 2015. "Liquidity, risk measures, and concentration of measure," Papers 1510.07033, arXiv.org, revised Oct 2015.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lacker Daniel, 2018. "Law invariant risk measures and information divergences," Dependence Modeling, De Gruyter, vol. 6(1), pages 228-258, November.
    2. Acciaio, Beatrice & Föllmer, Hans & Penner, Irina, 2012. "Risk assessment for uncertain cash flows: model ambiguity, discounting ambiguity, and the role of bubbles," LSE Research Online Documents on Economics 50118, London School of Economics and Political Science, LSE Library.
    3. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    4. Tomasz R. Bielecki & Igor Cialenco & Marcin Pitera, 2014. "A unified approach to time consistency of dynamic risk measures and dynamic performance measures in discrete time," Papers 1409.7028, arXiv.org, revised Sep 2017.
    5. Beatrice Acciaio & Hans Föllmer & Irina Penner, 2012. "Risk assessment for uncertain cash flows: model ambiguity, discounting ambiguity, and the role of bubbles," Finance and Stochastics, Springer, vol. 16(4), pages 669-709, October.
    6. Föllmer Hans, 2014. "Spatial risk measures and their local specification: The locally law-invariant case," Statistics & Risk Modeling, De Gruyter, vol. 31(1), pages 79-101, March.
    7. Geissel Sebastian & Sass Jörn & Seifried Frank Thomas, 2018. "Optimal expected utility risk measures," Statistics & Risk Modeling, De Gruyter, vol. 35(1-2), pages 73-87, January.
    8. Roorda Berend & Schumacher Hans, 2013. "Membership conditions for consistent families of monetary valuations," Statistics & Risk Modeling, De Gruyter, vol. 30(3), pages 255-280, August.
    9. Beatrice Acciaio & Irina Penner, 2010. "Dynamic risk measures," Papers 1002.3794, arXiv.org.
    10. Beatrice Acciaio & Hans Foellmer & Irina Penner, 2010. "Risk assessment for uncertain cash flows: Model ambiguity, discounting ambiguity, and the role of bubbles," Papers 1002.3627, arXiv.org.
    11. Zachary Feinstein & Birgit Rudloff, 2018. "Scalar multivariate risk measures with a single eligible asset," Papers 1807.10694, arXiv.org, revised Feb 2021.
    12. Fei Sun & Jingchao Li & Jieming Zhou, 2018. "Dynamic risk measures with fluctuation of market volatility under Bochne-Lebesgue space," Papers 1806.01166, arXiv.org, revised Mar 2024.
    13. Elisa Mastrogiacomo & Emanuela Rosazza Gianin, 2019. "Time-consistency of risk measures: how strong is such a property?," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 287-317, June.
    14. Yi Shen & Zachary Van Oosten & Ruodu Wang, 2024. "Partial Law Invariance and Risk Measures," Papers 2401.17265, arXiv.org, revised Jun 2024.
    15. Zachary Feinstein & Birgit Rudloff, 2012. "Multiportfolio time consistency for set-valued convex and coherent risk measures," Papers 1212.5563, arXiv.org, revised Oct 2014.
    16. Bellini, Fabio & Laeven, Roger J.A. & Rosazza Gianin, Emanuela, 2021. "Dynamic robust Orlicz premia and Haezendonck–Goovaerts risk measures," European Journal of Operational Research, Elsevier, vol. 291(2), pages 438-446.
    17. Mitja Stadje, 2018. "Representation Results for Law Invariant Recursive Dynamic Deviation Measures and Risk Sharing," Papers 1811.09615, arXiv.org, revised Dec 2018.
    18. Nicole EL KAROUI & Claudia RAVANELLI, 2008. "Cash Sub-additive Risk Measures and Interest Rate Ambiguity," Swiss Finance Institute Research Paper Series 08-09, Swiss Finance Institute.
    19. Marcelo Brutti Righi & Marlon Ruoso Moresco, 2024. "Inf-convolution and optimal risk sharing with countable sets of risk measures," Annals of Operations Research, Springer, vol. 336(1), pages 829-860, May.
    20. Zachary Feinstein & Birgit Rudloff, 2018. "Time consistency for scalar multivariate risk measures," Papers 1810.04978, arXiv.org, revised Nov 2021.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1510.07030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.