IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v117y2007i11p1663-1688.html
   My bibliography  Save this article

Robust utility maximization with limited downside risk in incomplete markets

Author

Listed:
  • Gundel, Anne
  • Weber, Stefan

Abstract

In this article we consider the portfolio selection problem of an agent with robust preferences in the sense of Gilboa and Schmeidler [Itzhak Gilboa, David Schmeidler, Maxmin expected utility with non-unique prior, Journal of Mathematical Economics 18 (1989) 141-153] in an incomplete market. Downside risk is constrained by a robust version of utility-based shortfall risk. We derive an explicit representation of the optimal terminal wealth in terms of certain worst case measures which can be characterized as minimizers of a dual problem. This dual problem involves a three-dimensional analogue of f-divergences which generalize the notion of relative entropy.

Suggested Citation

  • Gundel, Anne & Weber, Stefan, 2007. "Robust utility maximization with limited downside risk in incomplete markets," Stochastic Processes and their Applications, Elsevier, vol. 117(11), pages 1663-1688, November.
  • Handle: RePEc:eee:spapps:v:117:y:2007:i:11:p:1663-1688
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(07)00090-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    2. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    3. Stefan Weber, 2006. "Distribution‐Invariant Risk Measures, Information, And Dynamic Consistency," Mathematical Finance, Wiley Blackwell, vol. 16(2), pages 419-441, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Areski Cousin & Ying Jiao & Christian y Robert & Olivier David Zerbib, 2021. "Optimal asset allocation subject to withdrawal risk and solvency constraints," Working Papers hal-03244380, HAL.
    2. De Franco, Carmine & Tankov, Peter, 2011. "Portfolio insurance under a risk-measure constraint," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 361-370.
    3. Traian A. Pirvu & Gordan Žitković, 2009. "Maximizing The Growth Rate Under Risk Constraints," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 423-455, July.
    4. Francesco Ruscitti & Ram Sewak Dubey & Giorgio Laguzzi, 2024. "Decision-making under risk: when is utility-maximization equivalent to risk-minimization?," Theory and Decision, Springer, vol. 97(1), pages 23-38, August.
    5. Cousin, Areski & Jiao, Ying & Robert, Christian Y. & Zerbib, Olivier David, 2016. "Asset allocation strategies in the presence of liability constraints," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 327-338.
    6. Géraldine Bouveret, 2018. "Portfolio Optimization Under A Quantile Hedging Constraint," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(07), pages 1-36, November.
    7. Gundel, Anne & Weber, Stefan, 2008. "Utility maximization under a shortfall risk constraint," Journal of Mathematical Economics, Elsevier, vol. 44(11), pages 1126-1151, December.
    8. Santiago Moreno-Bromberg & Traian Pirvu & Anthony R'eveillac, 2011. "CRRA Utility Maximization under Risk Constraints," Papers 1106.1702, arXiv.org, revised Mar 2012.
    9. Marcos Escobar-Anel & Yevhen Havrylenko & Rudi Zagst, 2022. "Value-at-Risk constrained portfolios in incomplete markets: a dynamic programming approach to Heston's model," Papers 2208.14152, arXiv.org, revised Jul 2024.
    10. Géraldine Bouveret & Athena Picarelli, 2020. "A Level-Set Approach for Stochastic Optimal Control Problems Under Controlled-Loss Constraints," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 779-805, September.
    11. Ying Jiao & Olivier Klopfenstein & Peter Tankov, 2013. "Hedging under multiple risk constraints," Papers 1309.5094, arXiv.org.
    12. Balter, Anne G. & Pelsser, Antoon, 2020. "Pricing and hedging in incomplete markets with model uncertainty," European Journal of Operational Research, Elsevier, vol. 282(3), pages 911-925.
    13. Oliver Janke & Qinghua Li, 2015. "Portfolio Optimization under Shortfall Risk Constraint," Papers 1501.07480, arXiv.org, revised Apr 2016.
    14. Ying Jiao & Olivier Klopfenstein & Peter Tankov, 2017. "Hedging under multiple risk constraints," Finance and Stochastics, Springer, vol. 21(2), pages 361-396, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Domenico Cuoco & Hua He & Sergei Isaenko, 2008. "Optimal Dynamic Trading Strategies with Risk Limits," Operations Research, INFORMS, vol. 56(2), pages 358-368, April.
    2. Roger J. A. Laeven & Mitja Stadje, 2013. "Entropy Coherent and Entropy Convex Measures of Risk," Mathematics of Operations Research, INFORMS, vol. 38(2), pages 265-293, May.
    3. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    4. Samuel Drapeau & Michael Kupper, 2013. "Risk Preferences and Their Robust Representation," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 28-62, February.
    5. Gundel, Anne & Weber, Stefan, 2008. "Utility maximization under a shortfall risk constraint," Journal of Mathematical Economics, Elsevier, vol. 44(11), pages 1126-1151, December.
    6. Wei Wang & Huifu Xu, 2023. "Preference robust state-dependent distortion risk measure on act space and its application in optimal decision making," Computational Management Science, Springer, vol. 20(1), pages 1-51, December.
    7. Schumacher Johannes M., 2018. "Distortion risk measures, ROC curves, and distortion divergence," Statistics & Risk Modeling, De Gruyter, vol. 35(1-2), pages 35-50, January.
    8. Qian Lin & Frank Riedel, 2021. "Optimal consumption and portfolio choice with ambiguous interest rates and volatility," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(3), pages 1189-1202, April.
    9. Ehud Lehrer, 2009. "A new integral for capacities," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 39(1), pages 157-176, April.
    10. Qinyu Wu & Fan Yang & Ping Zhang, 2023. "Conditional generalized quantiles based on expected utility model and equivalent characterization of properties," Papers 2301.12420, arXiv.org.
    11. Rose-Anne Dana & Cuong Le Van, 2009. "No-arbitrage, overlapping sets of priors and the existence of efficient allocations and equilibria in the presence of risk and ambiguity," Post-Print halshs-00281582, HAL.
    12. Nendel, Max & Streicher, Jan, 2023. "An axiomatic approach to default risk and model uncertainty in rating systems," Journal of Mathematical Economics, Elsevier, vol. 109(C).
    13. Yuanying Guan & Zhanyi Jiao & Ruodu Wang, 2022. "A reverse ES (CVaR) optimization formula," Papers 2203.02599, arXiv.org, revised May 2023.
    14. Asimit, Alexandru V. & Bignozzi, Valeria & Cheung, Ka Chun & Hu, Junlei & Kim, Eun-Seok, 2017. "Robust and Pareto optimality of insurance contracts," European Journal of Operational Research, Elsevier, vol. 262(2), pages 720-732.
    15. Assa, Hirbod & Zimper, Alexander, 2018. "Preferences over all random variables: Incompatibility of convexity and continuity," Journal of Mathematical Economics, Elsevier, vol. 75(C), pages 71-83.
    16. William B. Haskell & Wenjie Huang & Huifu Xu, 2018. "Preference Elicitation and Robust Optimization with Multi-Attribute Quasi-Concave Choice Functions," Papers 1805.06632, arXiv.org.
    17. Corina Birghila & Tim J. Boonen & Mario Ghossoub, 2023. "Optimal insurance under maxmin expected utility," Finance and Stochastics, Springer, vol. 27(2), pages 467-501, April.
    18. Dirk Becherer & Klebert Kentia, 2017. "Good Deal Hedging and Valuation under Combined Uncertainty about Drift and Volatility," Papers 1704.02505, arXiv.org.
    19. Yacine AÏT‐SAHALI & Michael W. Brandt, 2001. "Variable Selection for Portfolio Choice," Journal of Finance, American Finance Association, vol. 56(4), pages 1297-1351, August.
    20. Jörn Dunkel & Stefan Weber, 2010. "Stochastic Root Finding and Efficient Estimation of Convex Risk Measures," Operations Research, INFORMS, vol. 58(5), pages 1505-1521, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:117:y:2007:i:11:p:1663-1688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.