IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v19y2009i2p303-327.html
   My bibliography  Save this article

Implied Volatility In The Hull–White Model

Author

Listed:
  • Archil Gulisashvili
  • Elias M. Stein

Abstract

We study the implied volatility K↦I(K) in the Hull–White model of option pricing, and obtain asymptotic formulas for this function as the strike price K tends to infinity or zero. We also prove that the function I is convex near zero and concave near infinity, and characterize the behavior of the first two derivatives of this function.

Suggested Citation

  • Archil Gulisashvili & Elias M. Stein, 2009. "Implied Volatility In The Hull–White Model," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 303-327, April.
  • Handle: RePEc:bla:mathfi:v:19:y:2009:i:2:p:303-327
    DOI: 10.1111/j.1467-9965.2009.00368.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9965.2009.00368.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9965.2009.00368.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. Benaim & P. Friz, 2009. "Regular Variation And Smile Asymptotics," Mathematical Finance, Wiley Blackwell, vol. 19(1), pages 1-12, January.
    2. David G. Hobson & L. C. G. Rogers, 1998. "Complete Models with Stochastic Volatility," Mathematical Finance, Wiley Blackwell, vol. 8(1), pages 27-48, January.
    3. Leif Andersen & Vladimir Piterbarg, 2007. "Moment explosions in stochastic volatility models," Finance and Stochastics, Springer, vol. 11(1), pages 29-50, January.
    4. Eric Renault & Nizar Touzi, 1996. "Option Hedging And Implied Volatilities In A Stochastic Volatility Model1," Mathematical Finance, Wiley Blackwell, vol. 6(3), pages 279-302, July.
    5. Yingzi Zhu & Marco Avellaneda, 1998. "A Risk-Neutral Stochastic Volatility Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 1(02), pages 289-310.
    6. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    7. Roger W. Lee, 2001. "Implied And Local Volatilities Under Stochastic Volatility," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 45-89.
    8. K. Ronnie Sircar & George Papanicolaou, 1999. "Stochastic volatility, smile & asymptotics," Applied Mathematical Finance, Taylor & Francis Journals, vol. 6(2), pages 107-145.
    9. Roger W. Lee, 2004. "The Moment Formula For Implied Volatility At Extreme Strikes," Mathematical Finance, Wiley Blackwell, vol. 14(3), pages 469-480, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefano De Marco & Caroline Hillairet & Antoine Jacquier, 2013. "Shapes of implied volatility with positive mass at zero," Papers 1310.1020, arXiv.org, revised May 2017.
    2. Stefano De Marco & Caroline Hillairet & Antoine Jacquier, 2017. "Shapes of implied volatility with positive mass at zero," Working Papers 2017-77, Center for Research in Economics and Statistics.
    3. Dan Pirjol & Lingjiong Zhu, 2017. "Asymptotics for the Euler-Discretized Hull-White Stochastic Volatility Model," Papers 1707.00899, arXiv.org.
    4. A. Gulisashvili, 2009. "Asymptotic Formulas with Error Estimates for Call Pricing Functions and the Implied Volatility at Extreme Strikes," Papers 0906.0394, arXiv.org.
    5. Archil Gulisashvili & Josep Vives, 2010. "Two-sided estimates for stock price distribution densities in jump-diffusion models," Papers 1005.1917, arXiv.org.
    6. Dan Pirjol & Lingjiong Zhu, 2020. "Asymptotics of the time-discretized log-normal SABR model: The implied volatility surface," Papers 2001.09850, arXiv.org, revised Mar 2020.
    7. Dan Pirjol & Lingjiong Zhu, 2018. "Asymptotics for the Euler-Discretized Hull-White Stochastic Volatility Model," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 289-331, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Caravenna & Jacopo Corbetta, 2015. "The asymptotic smile of a multiscaling stochastic volatility model," Papers 1501.03387, arXiv.org, revised Jul 2017.
    2. Caravenna, Francesco & Corbetta, Jacopo, 2018. "The asymptotic smile of a multiscaling stochastic volatility model," Stochastic Processes and their Applications, Elsevier, vol. 128(3), pages 1034-1071.
    3. A. Gulisashvili, 2009. "Asymptotic Formulas with Error Estimates for Call Pricing Functions and the Implied Volatility at Extreme Strikes," Papers 0906.0394, arXiv.org.
    4. Cristian Homescu, 2011. "Implied Volatility Surface: Construction Methodologies and Characteristics," Papers 1107.1834, arXiv.org.
    5. Dan Pirjol & Lingjiong Zhu, 2020. "Asymptotics of the time-discretized log-normal SABR model: The implied volatility surface," Papers 2001.09850, arXiv.org, revised Mar 2020.
    6. Jacquier, Antoine & Roome, Patrick, 2016. "Large-maturity regimes of the Heston forward smile," Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1087-1123.
    7. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    8. Tak Siu, 2006. "Option Pricing Under Autoregressive Random Variance Models," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(2), pages 62-75.
    9. Stefano De Marco & Caroline Hillairet & Antoine Jacquier, 2017. "Shapes of implied volatility with positive mass at zero," Working Papers 2017-77, Center for Research in Economics and Statistics.
    10. Antoine Jacquier & Patrick Roome, 2013. "The Small-Maturity Heston Forward Smile," Papers 1303.4268, arXiv.org, revised Aug 2013.
    11. Stefano De Marco & Caroline Hillairet & Antoine Jacquier, 2013. "Shapes of implied volatility with positive mass at zero," Papers 1310.1020, arXiv.org, revised May 2017.
    12. Antoine Jacquier & Fangwei Shi, 2016. "The randomised Heston model," Papers 1608.07158, arXiv.org, revised Dec 2018.
    13. P. Friz & S. Gerhold & A. Gulisashvili & S. Sturm, 2010. "On refined volatility smile expansion in the Heston model," Papers 1001.3003, arXiv.org, revised Nov 2010.
    14. Mario Dell’Era, 2014. "Closed Form Solution for Heston PDE By Geometrical Transformations," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 4(6), pages 793-807, June.
    15. Peter Carr & Sander Willems, 2019. "A lognormal type stochastic volatility model with quadratic drift," Papers 1908.07417, arXiv.org.
    16. Francesco Caravenna & Jacopo Corbetta, 2014. "General smile asymptotics with bounded maturity," Papers 1411.1624, arXiv.org, revised Jul 2016.
    17. Vagnani, Gianluca, 2009. "The Black-Scholes model as a determinant of the implied volatility smile: A simulation study," Journal of Economic Behavior & Organization, Elsevier, vol. 72(1), pages 103-118, October.
    18. Peters, R. & van der Weide, R., 2012. "Volatility: Expectations and Realizations," CeNDEF Working Papers 12-04, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    19. Sergei Fedotov & Sergei Mikhailov, 2001. "Option Pricing For Incomplete Markets Via Stochastic Optimization: Transaction Costs, Adaptive Control And Forecast," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 179-195.
    20. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:19:y:2009:i:2:p:303-327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.