IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v01y1998i02ns0219024998000163.html
   My bibliography  Save this article

A Risk-Neutral Stochastic Volatility Model

Author

Listed:
  • Yingzi Zhu

    (Citibank, N.A., 909 Third Avenue, 29th Floor, Zone 1, New York, NY 10043, USA)

  • Marco Avellaneda

    (Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012, USA)

Abstract

We construct a risk-neutral stochastic volatility model using no-arbitrage pricing principles. We then study the behavior of the implied volatility of options that are deep in and out of the money according to this model. The motivation of this study is to show the difference in the asymptotic behavior of the distribution tails between the usual Black–Scholes log-normal distribution and the risk-neutral stochastic volatility distribution.In the second part of the paper, we further explore this risk-neutral stochastic volatility model by a Monte-Carlo study on the implied volatility curve (implied volatility as a function of the option strikes) for near-the-money options. We study the behavior of this "smile" curve under different choices of parameter for the model, and determine how the shape and skewness of the "smile" curve is affected by the volatility of volatility ("V-vol") and the correlation between the underlying asset and its volatility.

Suggested Citation

  • Yingzi Zhu & Marco Avellaneda, 1998. "A Risk-Neutral Stochastic Volatility Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 1(02), pages 289-310.
  • Handle: RePEc:wsi:ijtafx:v:01:y:1998:i:02:n:s0219024998000163
    DOI: 10.1142/S0219024998000163
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024998000163
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024998000163?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cristian Homescu, 2011. "Implied Volatility Surface: Construction Methodologies and Characteristics," Papers 1107.1834, arXiv.org.
    2. Max O. Souza & Jorge P. Zubelli, 2007. "On The Asymptotics Of Fast Mean-Reversion Stochastic Volatility Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 10(05), pages 817-835.
    3. Tak Siu, 2006. "Option Pricing Under Autoregressive Random Variance Models," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(2), pages 62-75.
    4. Carr, Peter & Wu, Liuren, 2016. "Analyzing volatility risk and risk premium in option contracts: A new theory," Journal of Financial Economics, Elsevier, vol. 120(1), pages 1-20.
    5. Archil Gulisashvili & Elias M. Stein, 2009. "Implied Volatility In The Hull–White Model," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 303-327, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:01:y:1998:i:02:n:s0219024998000163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.