IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v15y1994i2p221-233.html
   My bibliography  Save this article

Diagnostic Checking Of Periodic Autoregression Models With Application

Author

Listed:
  • A. I. McLeod

Abstract

. An overview of model building with periodic autoregression (PAR) models is given emphasizing the three stages of model development:identification, estimation and diagnostic checking. New results on the distribution of residual autocorrelations and suitable diagnostic checks are derived. The validity of these checks is demonstrated by simulation. The methodology discussed is illustrated with an application. It is pointed out that the PAR approach to model development offers some important advantages over the more general approach using periodic autoregressive moving‐average models.

Suggested Citation

  • A. I. McLeod, 1994. "Diagnostic Checking Of Periodic Autoregression Models With Application," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(2), pages 221-233, March.
  • Handle: RePEc:bla:jtsera:v:15:y:1994:i:2:p:221-233
    DOI: 10.1111/j.1467-9892.1994.tb00186.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9892.1994.tb00186.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9892.1994.tb00186.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Angeles Carnero & Siem Jan Koopman & Marius Ooms, 2003. "Periodic Heteroskedastic RegARFIMA Models for Daily Electricity Spot Prices," Tinbergen Institute Discussion Papers 03-071/4, Tinbergen Institute.
    2. repec:vuw:vuwscr:18989 is not listed on IDEAS
    3. Eduardo Rossi & Dean Fantazzini, 2015. "Long Memory and Periodicity in Intraday Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 13(4), pages 922-961.
    4. Pierre Duchesne & Pierre Lafaye de Micheaux, 2013. "Distributions for residual autocovariances in parsimonious periodic vector autoregressive models with applications," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(4), pages 496-507, July.
    5. Siem Jan Koopman & Marius Ooms, 2003. "Time Series Modelling of Daily Tax Revenues," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 57(4), pages 439-469, November.
    6. Guthrie, Graeme & Videbeck, Steen, 2002. "High Frequency Electricity Spot Price Dynamics: An Intra-day Markets Approach," Working Paper Series 18989, Victoria University of Wellington, The New Zealand Institute for the Study of Competition and Regulation.
    7. Siem Jan Koopman & Marius Ooms & Irma Hindrayanto, 2009. "Periodic Unobserved Cycles in Seasonal Time Series with an Application to US Unemployment," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(5), pages 683-713, October.
    8. Christian Francq & Roch Roy & Abdessamad Saidi, 2011. "Asymptotic Properties of Weighted Least Squares Estimation in Weak PARMA Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(6), pages 699-723, November.
    9. Koopman, Siem Jan & Ooms, Marius & Carnero, M. Angeles, 2007. "Periodic Seasonal Reg-ARFIMAGARCH Models for Daily Electricity Spot Prices," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 16-27, March.
    10. Guthrie, Graeme & Videbeck, Steen, 2002. "High Frequency Electricity Spot Price Dynamics: An Intra-day Markets Approach," Working Paper Series 3891, Victoria University of Wellington, The New Zealand Institute for the Study of Competition and Regulation.
    11. Eugen Ursu & Pierre Duchesne, 2009. "On modelling and diagnostic checking of vector periodic autoregressive time series models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 70-96, January.
    12. Francesco Battaglia & Domenico Cucina & Manuel Rizzo, 2020. "Detection and estimation of additive outliers in seasonal time series," Computational Statistics, Springer, vol. 35(3), pages 1393-1409, September.
    13. T. Manouchehri & A. R. Nematollahi, 2019. "Periodic autoregressive models with closed skew-normal innovations," Computational Statistics, Springer, vol. 34(3), pages 1183-1213, September.
    14. Hugo Siqueira & Mariana Macedo & Yara de Souza Tadano & Thiago Antonini Alves & Sergio L. Stevan & Domingos S. Oliveira & Manoel H.N. Marinho & Paulo S.G. de Mattos Neto & João F. L. de Oliveira & Ive, 2020. "Selection of Temporal Lags for Predicting Riverflow Series from Hydroelectric Plants Using Variable Selection Methods," Energies, MDPI, vol. 13(16), pages 1-35, August.
    15. Ooms, M. & Franses, Ph.H.B.F., 1998. "A seasonal periodic long memory model for monthly river flows," Econometric Institute Research Papers EI 9842, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    16. Amaal Elsayed Mubarak & Ehab Mohamed Almetwally, 2024. "Modelling and Forecasting of Covid-19 Using Periodical ARIMA Models," Annals of Data Science, Springer, vol. 11(4), pages 1483-1502, August.
    17. Eugen Ursu & Pierre Duchesne, 2009. "Estimation and model adequacy checking for multivariate seasonal autoregressive time series models with periodically varying parameters," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(2), pages 183-212, May.
    18. Hindrayanto, Irma & Koopman, Siem Jan & Ooms, Marius, 2010. "Exact maximum likelihood estimation for non-stationary periodic time series models," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2641-2654, November.
    19. Sarnaglia, A.J.Q. & Reisen, V.A. & Lévy-Leduc, C., 2010. "Robust estimation of periodic autoregressive processes in the presence of additive outliers," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2168-2183, October.
    20. Haldrup, Niels & Hylleberg, Svend & Pons, Gabriel & Sanso, Andreu, 2007. "Common Periodic Correlation Features and the Interaction of Stocks and Flows in Daily Airport Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 21-32, January.
    21. Luis E. Nieto-Barajas, 2022. "Dependence on a collection of Poisson random variables," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(1), pages 21-39, March.
    22. PEREAU Jean-Christophe & URSU Eugen, 2015. "Application of periodic autoregressive process to the modeling of the Garonne river flows," Cahiers du GREThA (2007-2019) 2015-14, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    23. Franses, Philip Hans & Ooms, Marius, 1997. "A periodic long-memory model for quarterly UK inflation," International Journal of Forecasting, Elsevier, vol. 13(1), pages 117-126, March.
    24. Hurd, H. & Makagon, A. & Miamee, A. G., 0. "On AR(1) models with periodic and almost periodic coefficients," Stochastic Processes and their Applications, Elsevier, vol. 100(1-2), pages 167-185, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:15:y:1994:i:2:p:221-233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.