IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v30y2009i6p618-630.html
   My bibliography  Save this article

The restricted likelihood ratio test at the boundary in autoregressive series

Author

Listed:
  • Willa W. Chen
  • Rohit S. Deo

Abstract

. The restricted likelihood ratio test, RLRT, for the autoregressive coefficient in autoregressive models has recently been shown to be second‐order pivotal when the autoregressive coefficient is in the interior of the parameter space and so is very well approximated by the distribution. In this article, the non‐standard asymptotic distribution of the RLRT for the unit root boundary value is obtained and is found to be almost identical to that of the in the right tail. Together, these two results imply that the distribution approximates the RLRT distribution very well even for near unit root series and transitions smoothly to the unit root distribution.

Suggested Citation

  • Willa W. Chen & Rohit S. Deo, 2009. "The restricted likelihood ratio test at the boundary in autoregressive series," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(6), pages 618-630, November.
  • Handle: RePEc:bla:jtsera:v:30:y:2009:i:6:p:618-630
    DOI: 10.1111/j.1467-9892.2009.00630.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9892.2009.00630.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9892.2009.00630.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Takesi Hayakawa, 1977. "The likelihood ratio criterion and the asymptotic expansion of its distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 29(1), pages 359-378, December.
    2. Rahman, Shahidur & King, Maxwell L., 1997. "Marginal-likelihood score-based tests of regression disturbances in the presence of nuisance parameters," Journal of Econometrics, Elsevier, vol. 82(1), pages 81-106.
    3. Francke, Marc K. & de Vos, Aart F., 2007. "Marginal likelihood and unit roots," Journal of Econometrics, Elsevier, vol. 137(2), pages 708-728, April.
    4. Gerda Claeskens, 2004. "Restricted likelihood ratio lack‐of‐fit tests using mixed spline models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 909-926, November.
    5. Chen, Willa W. & Deo, Rohit S., 2009. "Bias Reduction And Likelihood-Based Almost Exactly Sized Hypothesis Testing In Predictive Regressions Using The Restricted Likelihood," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1143-1179, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christis Katsouris, 2023. "Unified Inference for Dynamic Quantile Predictive Regression," Papers 2309.14160, arXiv.org, revised Nov 2023.
    2. Peter C.B. Phillips & Ye Chen, "undated". "Restricted Likelihood Ratio Tests in Predictive Regression," Cowles Foundation Discussion Papers 1968, Cowles Foundation for Research in Economics, Yale University.
    3. Christis Katsouris, 2023. "Quantile Time Series Regression Models Revisited," Papers 2308.06617, arXiv.org, revised Aug 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sriananthakumar, Sivagowry, 2013. "Testing linear regression model with AR(1) errors against a first-order dynamic linear regression model with white noise errors: A point optimal testing approach," Economic Modelling, Elsevier, vol. 33(C), pages 126-136.
    2. Peter C.B. Phillips & Ye Chen, "undated". "Restricted Likelihood Ratio Tests in Predictive Regression," Cowles Foundation Discussion Papers 1968, Cowles Foundation for Research in Economics, Yale University.
    3. Marc K. Francke & Siem Jan Koopman & Aart F. De Vos, 2010. "Likelihood functions for state space models with diffuse initial conditions," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(6), pages 407-414, November.
    4. Zongwu Cai & Haiqiang Chen & Xiaosai Liao, 2020. "A New Robust Inference for Predictive Quantile Regression," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202002, University of Kansas, Department of Economics, revised Feb 2020.
    5. Kakizawa, Yoshihide, 2017. "Third-order average local powers of Bartlett-type adjusted tests: Ordinary versus adjusted profile likelihood," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 98-120.
    6. Zaili Fang & Inyoung Kim & Jeesun Jung, 2018. "Semiparametric Kernel-Based Regression for Evaluating Interaction Between Pathway Effect and Covariate," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(1), pages 129-152, March.
    7. Sonja Greven & Ciprian Crainiceanu, 2013. "On likelihood ratio testing for penalized splines," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(4), pages 387-402, October.
    8. Chesher, Andrew & Dhaene, Geert & Gouriéroux, Christian & Scaillet, Olivier, 1999. "Bartlett Identities Tests," LIDAM Discussion Papers IRES 1999019, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    9. Demetrescu, Matei & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2023. "Transformed regression-based long-horizon predictability tests," Journal of Econometrics, Elsevier, vol. 237(2).
    10. Jahar Bhowmik & Maxwell King, 2007. "Maximal invariant likelihood based testing of semi-linear models," Statistical Papers, Springer, vol. 48(3), pages 357-383, September.
    11. Badi Baltagi & Seuck Heun Song & Byoung Cheol Jung, 2002. "Simple Lm Tests For The Unbalanced Nested Error Component Regression Model," Econometric Reviews, Taylor & Francis Journals, vol. 21(2), pages 167-187.
    12. Ogasawara, Haruhiko, 2010. "Asymptotic expansions for the pivots using log-likelihood derivatives with an application in item response theory," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2149-2167, October.
    13. Noud P.A. van Giersbergen, 2013. "Bartlett correction in the stable second‐order autoregressive model with intercept and trend," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(4), pages 482-498, November.
    14. Kakizawa, Yoshihide, 2011. "Improved additive adjustments for the LR/ELR test statistics," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1245-1255, August.
    15. Jae Kim & Mahbuba Yeasmin, 2005. "The Size and Power of the Bias-Corrected Bootstrap Test for Regression Models with Autocorrelated Errors," Computational Economics, Springer;Society for Computational Economics, vol. 25(3), pages 255-267, June.
    16. Choi, Yongok & Jacewitz, Stefan & Park, Joon Y., 2016. "A reexamination of stock return predictability," Journal of Econometrics, Elsevier, vol. 192(1), pages 168-189.
    17. Susanne M. Schennach, 2014. "Entropic Latent Variable Integration via Simulation," Econometrica, Econometric Society, vol. 82(1), pages 345-385, January.
    18. Bu, Ruijun & Kim, Jihyun & Wang, Bin, 2023. "Uniform and Lp convergences for nonparametric continuous time regressions with semiparametric applications," Journal of Econometrics, Elsevier, vol. 235(2), pages 1934-1954.
    19. Cribari-Netoa, Francisco & Ferrari, Silvia L. P., 1995. "Bartlett-corrected tests for heteroskedastic linear models," Economics Letters, Elsevier, vol. 48(2), pages 113-118, May.
    20. Bent Nielsen, 2008. "Power of Tests for Unit Roots in the Presence of a Linear Trend," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(5), pages 619-644, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:30:y:2009:i:6:p:618-630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.