IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v25y2004i2p217-234.html
   My bibliography  Save this article

Subsampling the mean of heavy‐tailed dependent observations

Author

Listed:
  • Piotr Kokoszka
  • Michael Wolf

Abstract

. We establish the validity of subsampling confidence intervals for the mean of a dependent series with heavy‐tailed marginal distributions. Using point process theory, we focus on GARCH‐like time series models. We propose a data‐dependent method for the optimal block size selection and investigate its performance by means of a simulation study.

Suggested Citation

  • Piotr Kokoszka & Michael Wolf, 2004. "Subsampling the mean of heavy‐tailed dependent observations," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(2), pages 217-234, March.
  • Handle: RePEc:bla:jtsera:v:25:y:2004:i:2:p:217-234
    DOI: 10.1046/j.0143-9782.2003.00346.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1046/j.0143-9782.2003.00346.x
    Download Restriction: no

    File URL: https://libkey.io/10.1046/j.0143-9782.2003.00346.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Piotr S. Kokoszka & Murad S. Taqqu, 1994. "Infinite Variance Stable Arma Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(2), pages 203-220, March.
    2. Cline, Daren B. H. & Brockwell, Peter J., 1985. "Linear prediction of ARMA processes with infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 19(2), pages 281-296, April.
    3. Piotr S. Kokoszka & Murad S. Taqqu, 2001. "Can One Use the Durbin–Levinson Algorithm to Generate Infinite Variance Fractional ARIMA Time Series?," Journal of Time Series Analysis, Wiley Blackwell, vol. 22(3), pages 317-337, May.
    4. McElroy, Tucker & Politis, Dimitris N., 2002. "Robust Inference For The Mean In The Presence Of Serial Correlation And Heavy-Tailed Distributions," Econometric Theory, Cambridge University Press, vol. 18(5), pages 1019-1039, October.
    5. Berkes, István & Horváth, Lajos & Kokoszka, Piotr, 2003. "Estimation Of The Maximal Moment Exponent Of A Garch(1,1) Sequence," Econometric Theory, Cambridge University Press, vol. 19(4), pages 565-586, August.
    6. Carrasco, Marine & Chen, Xiaohong, 2002. "Mixing And Moment Properties Of Various Garch And Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 18(1), pages 17-39, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tianming Xu & Yuesong Wei, 2023. "Ratio Test for Mean Changes in Time Series with Heavy-Tailed AR( p ) Noise Based on Multiple Sampling Methods," Mathematics, MDPI, vol. 11(18), pages 1-14, September.
    2. Jin, Hao & Zhang, Jinsuo & Zhang, Si & Yu, Cong, 2013. "The spurious regression of AR(p) infinite-variance sequence in the presence of structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 25-40.
    3. Jin, Hao & Tian, Zheng & Qin, Ruibing, 2009. "Bootstrap tests for structural change with infinite variance observations," Statistics & Probability Letters, Elsevier, vol. 79(19), pages 1985-1995, October.
    4. Jin, Hao & Tian, Zheng & Qin, Ruibing, 2009. "Subsampling tests for the mean change point with heavy-tailed innovations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(7), pages 2157-2166.
    5. Chen, Zhanshou & Jin, Zi & Tian, Zheng & Qi, Peiyan, 2012. "Bootstrap testing multiple changes in persistence for a heavy-tailed sequence," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2303-2316.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piotr Kokoszka & Michael Wolf, 2002. "Subsampling the mean of heavy-tailed dependent observations," Economics Working Papers 600, Department of Economics and Business, Universitat Pompeu Fabra.
    2. Aguilar, Mike & Hill, Jonathan B., 2015. "Robust score and portmanteau tests of volatility spillover," Journal of Econometrics, Elsevier, vol. 184(1), pages 37-61.
    3. Kokoszka, Piotr S. & Taqqu, Murad S., 1995. "Fractional ARIMA with stable innovations," Stochastic Processes and their Applications, Elsevier, vol. 60(1), pages 19-47, November.
    4. El Ghouch, Anouar & Genton, Marc G. & Bouezmarni , Taoufik, 2012. "Measuring the Discrepancy of a Parametric Model via Local Polynomial Smoothing," LIDAM Discussion Papers ISBA 2012001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Mika Meitz & Pentti Saikkonen, 2008. "Stability of nonlinear AR‐GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(3), pages 453-475, May.
    6. Jozef Baruník & Tobias Kley, 2019. "Quantile coherency: A general measure for dependence between cyclical economic variables," The Econometrics Journal, Royal Economic Society, vol. 22(2), pages 131-152.
    7. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    8. Dabo-Niang, Sophie & Francq, Christian & Zakoïan, Jean-Michel, 2010. "Combining Nonparametric and Optimal Linear Time Series Predictions," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1554-1565.
    9. Pierre Perron & Eduardo Zorita & Wen Cao & Clifford Hurvich & Philippe Soulier, 2017. "Drift in Transaction-Level Asset Price Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(5), pages 769-790, September.
    10. Conrad, Christian & Mammen, Enno, 2016. "Asymptotics for parametric GARCH-in-Mean models," Journal of Econometrics, Elsevier, vol. 194(2), pages 319-329.
    11. Taisuke Otsu & Myung Hwan Seo, 2014. "Asymptotics for maximum score method under general conditions," STICERD - Econometrics Paper Series 571, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    12. Francq, Christian & Zakoian, Jean-Michel, 2024. "Finite moments testing in a general class of nonlinear time series models," MPRA Paper 121193, University Library of Munich, Germany.
    13. Peter Malec, 2016. "A Semiparametric Intraday GARCH Model," Cambridge Working Papers in Economics 1633, Faculty of Economics, University of Cambridge.
    14. repec:bgu:wpaper:0608 is not listed on IDEAS
    15. Gospodinov, Nikolay & Otsu, Taisuke, 2012. "Local GMM estimation of time series models with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 170(2), pages 476-490.
    16. Boldea, Otilia & Hall, Alastair R., 2013. "Estimation and inference in unstable nonlinear least squares models," Journal of Econometrics, Elsevier, vol. 172(1), pages 158-167.
    17. Ruiz-Castillo, Javier, 2012. "From the “European Paradox” to a European Drama in citation impact," UC3M Working papers. Economics we1211, Universidad Carlos III de Madrid. Departamento de Economía.
    18. Bai, Shuyang & Taqqu, Murad S. & Zhang, Ting, 2016. "A unified approach to self-normalized block sampling," Stochastic Processes and their Applications, Elsevier, vol. 126(8), pages 2465-2493.
    19. Li, Qi & Yang, Jian & Hsiao, Cheng & Chang, Young-Jae, 2005. "The relationship between stock returns and volatility in international stock markets," Journal of Empirical Finance, Elsevier, vol. 12(5), pages 650-665, December.
    20. Sampaio, Jhames M. & Morettin, Pedro A., 2020. "Stable Randomized Generalized Autoregressive Conditional Heteroskedastic Models," Econometrics and Statistics, Elsevier, vol. 15(C), pages 67-83.
    21. Mayer, Alexander & Wied, Dominik, 2023. "Estimation and inference in factor copula models with exogenous covariates," Journal of Econometrics, Elsevier, vol. 235(2), pages 1500-1521.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:25:y:2004:i:2:p:217-234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.