IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v19y1985i2p281-296.html
   My bibliography  Save this article

Linear prediction of ARMA processes with infinite variance

Author

Listed:
  • Cline, Daren B. H.
  • Brockwell, Peter J.

Abstract

In order to predict unobserved values of a linear process with infinite variance, we introduce a linear predictor which minimizes the dispersion (suitably defined) of the error distribution. When the linear process is driven by symmetric stable white noise this predictor minimizes the scale parameter of the error distribution. In the more general case when the driving white noise process has regularly varying tails with index [alpha], the predictor minimizes the size of the error tail probabilities. The procedure can be interpreted also as minimizing an appropriately defined l[alpha]-distance between the predictor and the random variable to be predicted. We derive explicitly the best linear predictor of Xn+1 in terms of X1,..., Xn for the process ARMA(1, 1) and for the process AR(p). For higher order processes general analytic expressions are cumbersome, but we indicate how predictors can be determined numerically.

Suggested Citation

  • Cline, Daren B. H. & Brockwell, Peter J., 1985. "Linear prediction of ARMA processes with infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 19(2), pages 281-296, April.
  • Handle: RePEc:eee:spapps:v:19:y:1985:i:2:p:281-296
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4149(85)90030-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bhansali, R. J. & Kokoszka, P. S., 2002. "Computation of the forecast coefficients for multistep prediction of long-range dependent time series," International Journal of Forecasting, Elsevier, vol. 18(2), pages 181-206.
    2. Hill, Jonathan B. & Aguilar, Mike, 2013. "Moment condition tests for heavy tailed time series," Journal of Econometrics, Elsevier, vol. 172(2), pages 255-274.
    3. John P. Nolan & Nalini Ravishanker, 2009. "Simultaneous prediction intervals for ARMA processes with stable innovations," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(3), pages 235-246.
    4. Karcher, Wolfgang & Shmileva, Elena & Spodarev, Evgeny, 2013. "Extrapolation of stable random fields," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 516-536.
    5. Piotr Kokoszka & Michael Wolf, 2004. "Subsampling the mean of heavy‐tailed dependent observations," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(2), pages 217-234, March.
    6. Balakrishna, N. & Hareesh, G., 2009. "Statistical signal extraction using stable processes," Statistics & Probability Letters, Elsevier, vol. 79(7), pages 851-856, April.
    7. Mohammadi, Mohammad & Mohammadpour, Adel, 2009. "Best linear prediction for [alpha]-stable random processes," Statistics & Probability Letters, Elsevier, vol. 79(21), pages 2266-2272, November.
    8. Piotr Kokoszka & Michael Wolf, 2002. "Subsampling the mean of heavy-tailed dependent observations," Economics Working Papers 600, Department of Economics and Business, Universitat Pompeu Fabra.
    9. Kokoszka, Piotr S. & Taqqu, Murad S., 1995. "Fractional ARIMA with stable innovations," Stochastic Processes and their Applications, Elsevier, vol. 60(1), pages 19-47, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:19:y:1985:i:2:p:281-296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.