IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v33y2006i2p155-174.html
   My bibliography  Save this article

A Bayesian approach for estimating antiviral efficacy in HIV dynamic models

Author

Listed:
  • Yangxin Huang
  • Hulin Wu

Abstract

The study of HIV dynamics is one of the most important developments in recent AIDS research. It has led to a new understanding of the pathogenesis of HIV infection. Although important findings in HIV dynamics have been published in prestigious scientific journals, the statistical methods for parameter estimation and model-fitting used in those papers appear surprisingly crude and have not been studied in more detail. For example, the unidentifiable parameters were simply imputed by mean estimates from previous studies, and important pharmacological/clinical factors were not considered in the modelling. In this paper, a viral dynamic model is developed to evaluate the effect of pharmacokinetic variation, drug resistance and adherence on antiviral responses. In the context of this model, we investigate a Bayesian modelling approach under a non-linear mixed-effects (NLME) model framework. In particular, our modelling strategy allows us to estimate time-varying antiviral efficacy of a regimen during the whole course of a treatment period by incorporating the information of drug exposure and drug susceptibility. Both simulated and real clinical data examples are given to illustrate the proposed approach. The Bayesian approach has great potential to be used in many aspects of viral dynamics modelling since it allow us to fit complex dynamic models and identify all the model parameters. Our results suggest that Bayesian approach for estimating parameters in HIV dynamic models is flexible and powerful.

Suggested Citation

  • Yangxin Huang & Hulin Wu, 2006. "A Bayesian approach for estimating antiviral efficacy in HIV dynamic models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 33(2), pages 155-174.
  • Handle: RePEc:taf:japsta:v:33:y:2006:i:2:p:155-174
    DOI: 10.1080/02664760500250552
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664760500250552
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664760500250552?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baisen Liu & Liangliang Wang & Yunlong Nie & Jiguo Cao, 2021. "Semiparametric Mixed-Effects Ordinary Differential Equation Models with Heavy-Tailed Distributions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 428-445, September.
    2. Qiu, Xing & Xu, Tao & Soltanalizadeh, Babak & Wu, Hulin, 2022. "Identifiability analysis of linear ordinary differential equation systems with a single trajectory," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    3. Zhang, Tingting & Sun, Yinge & Li, Huazhang & Yan, Guofen & Tanabe, Seiji & Miao, Ruizhong & Wang, Yaotian & Caffo, Brian S. & Quigg, Mark S., 2020. "Bayesian inference of a directional brain network model for intracranial EEG data," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    4. Hanwen Huang, 2022. "Bayesian multi‐level mixed‐effects model for influenza dynamics," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1978-1995, November.
    5. Hulin Wu & Hongqi Xue & Arun Kumar, 2012. "Numerical Discretization-Based Estimation Methods for Ordinary Differential Equation Models via Penalized Spline Smoothing with Applications in Biomedical Research," Biometrics, The International Biometric Society, vol. 68(2), pages 344-352, June.
    6. Damla Şentürk, 2010. "Comments on: Dynamic relations for sparsely sampled Gaussian processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 54-55, May.
    7. J. O. Ramsay & G. Hooker & D. Campbell & J. Cao, 2007. "Parameter estimation for differential equations: a generalized smoothing approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 741-796, November.
    8. Liu, Baisen & Wang, Liangliang & Nie, Yunlong & Cao, Jiguo, 2019. "Bayesian inference of mixed-effects ordinary differential equations models using heavy-tailed distributions," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 233-246.
    9. Hanwen Huang & Andreas Handel & Xiao Song, 2020. "A Bayesian approach to estimate parameters of ordinary differential equation," Computational Statistics, Springer, vol. 35(3), pages 1481-1499, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:33:y:2006:i:2:p:155-174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.