IDEAS home Printed from https://ideas.repec.org/a/bpj/jqsprt/v20y2024i4p365-383n1002.html
   My bibliography  Save this article

A generative approach to frame-level multi-competitor races

Author

Listed:
  • Stokes Tyrel

    (Department of Biostatistics, NYU Langone, New York, USA)

  • Bagga Gurashish

    (Department of Statistics and Actuarial Science, 1763 Simon Fraser University , Burnaby, Canada)

  • Kroetch Kimberly

    (Department of Statistics and Actuarial Science, 1763 Simon Fraser University , Burnaby, Canada)

  • Kumagai Brendan

    (Department of Statistics and Actuarial Science, 1763 Simon Fraser University , Burnaby, Canada)

  • Welsh Liam

    (Department of Statistical Sciences, 7938 University of Toronto , Toronto, Canada)

Abstract

Multi-competitor races often feature complicated within-race strategies that are difficult to capture when training data on race outcome level data. Models which do not account for race-level strategy may suffer from confounded inferences and predictions. We develop a generative model for multi-competitor races which explicitly models race-level effects like drafting and separates strategy from competitor ability. The model allows one to simulate full races from any real or created starting position opening new avenues for attributing value to within-race actions and performing counter-factual analyses. This methodology is sufficiently general to apply to any track based multi-competitor races where both tracking data is available and competitor movement is well described by simultaneous forward and lateral movements. We apply this methodology to one-mile horse races using frame-level tracking data provided by the New York Racing Association (NYRA) and the New York Thoroughbred Horsemen’s Association (NYTHA) for the Big Data Derby 2022 Kaggle Competition. We demonstrate how this model can yield new inferences, such as the estimation of horse-specific speed profiles and examples of posterior predictive counterfactual simulations to answer questions of interest such as starting lane impacts on race outcomes.

Suggested Citation

  • Stokes Tyrel & Bagga Gurashish & Kroetch Kimberly & Kumagai Brendan & Welsh Liam, 2024. "A generative approach to frame-level multi-competitor races," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 20(4), pages 365-383.
  • Handle: RePEc:bpj:jqsprt:v:20:y:2024:i:4:p:365-383:n:1002
    DOI: 10.1515/jqas-2023-0091
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jqas-2023-0091
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/jqas-2023-0091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    2. Daniel Cervone & Alex D’Amour & Luke Bornn & Kirk Goldsberry, 2016. "A Multiresolution Stochastic Process Model for Predicting Basketball Possession Outcomes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 585-599, April.
    3. Mark E. Glickman, 1999. "Parameter Estimation in Large Dynamic Paired Comparison Experiments," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 48(3), pages 377-394.
    4. Kovalchik, Stephanie, 2020. "Extension of the Elo rating system to margin of victory," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1329-1341.
    5. Jayaraman J. Thiagarajan & Bindya Venkatesh & Rushil Anirudh & Peer-Timo Bremer & Jim Gaffney & Gemma Anderson & Brian Spears, 2020. "Designing accurate emulators for scientific processes using calibration-driven deep models," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    6. R. L. Plackett, 1975. "The Analysis of Permutations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 24(2), pages 193-202, June.
    7. Mark Glickman, 2001. "Dynamic paired comparison models with stochastic variances," Journal of Applied Statistics, Taylor & Francis Journals, vol. 28(6), pages 673-689.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hua, Hsuan-Fu & Chang, Ching-Ju & Lin, Tse-Ching & Weng, Ruby Chiu-Hsing, 2024. "Rating players by Laplace’s approximation and dynamic modeling," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1152-1165.
    2. Santos-Fernandez Edgar & Wu Paul & Mengersen Kerrie L., 2019. "Bayesian statistics meets sports: a comprehensive review," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 15(4), pages 289-312, December.
    3. Beaudoin, David & Swartz, Tim, 2018. "A computationally intensive ranking system for paired comparison data," Operations Research Perspectives, Elsevier, vol. 5(C), pages 105-112.
    4. Baker, Rose D. & McHale, Ian G., 2014. "A dynamic paired comparisons model: Who is the greatest tennis player?," European Journal of Operational Research, Elsevier, vol. 236(2), pages 677-684.
    5. Angelini, Giovanni & Candila, Vincenzo & De Angelis, Luca, 2022. "Weighted Elo rating for tennis match predictions," European Journal of Operational Research, Elsevier, vol. 297(1), pages 120-132.
    6. Owen G. Ward & Jing Wu & Tian Zheng & Anna L. Smith & James P. Curley, 2022. "Network Hawkes process models for exploring latent hierarchy in social animal interactions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1402-1426, November.
    7. Alexandra Grand & Regina Dittrich & Brian Francis, 2015. "Markov models of dependence in longitudinal paired comparisons: an application to course design," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(2), pages 237-257, April.
    8. Blaž Krese & Erik Štrumbelj, 2021. "A Bayesian approach to time-varying latent strengths in pairwise comparisons," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-17, May.
    9. Deshpande Sameer K. & Evans Katherine, 2020. "Expected hypothetical completion probability," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 16(2), pages 85-94, June.
    10. Szczecinski Leszek, 2022. "G-Elo: generalization of the Elo algorithm by modeling the discretized margin of victory," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 18(1), pages 1-14, March.
    11. Lasek, Jan & Gagolewski, Marek, 2021. "Interpretable sports team rating models based on the gradient descent algorithm," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1061-1071.
    12. Devlin Stephen & Treloar Thomas & Creagar Molly & Cassels Samuel, 2021. "An iterative Markov rating method," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 17(2), pages 117-127, June.
    13. Sabin R. Paul, 2021. "Estimating player value in American football using plus–minus models," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 17(4), pages 313-364, December.
    14. Kovalchik, Stephanie, 2020. "Extension of the Elo rating system to margin of victory," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1329-1341.
    15. Newton Paul K & Aslam Kamran, 2009. "Monte Carlo Tennis: A Stochastic Markov Chain Model," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 5(3), pages 1-44, July.
    16. Silvia Montagna & Vanessa Orani & Raffaele Argiento, 2021. "Bayesian isotonic logistic regression via constrained splines: an application to estimating the serve advantage in professional tennis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 573-604, June.
    17. Mitchell J. Lovett & Ron Shachar, 2011. "The Seeds of Negativity: Knowledge and Money," Marketing Science, INFORMS, vol. 30(3), pages 430-446, 05-06.
    18. Francis,David C. & Kubinec ,Robert, 2022. "Beyond Political Connections : A Measurement Model Approach to Estimating Firm-levelPolitical Influence in 41 Economies," Policy Research Working Paper Series 10119, The World Bank.
    19. Martinovici, A., 2019. "Revealing attention - how eye movements predict brand choice and moment of choice," Other publications TiSEM 7dca38a5-9f78-4aee-bd81-c, Tilburg University, School of Economics and Management.
    20. Yongping Bao & Ludwig Danwitz & Fabian Dvorak & Sebastian Fehrler & Lars Hornuf & Hsuan Yu Lin & Bettina von Helversen, 2022. "Similarity and Consistency in Algorithm-Guided Exploration," CESifo Working Paper Series 10188, CESifo.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jqsprt:v:20:y:2024:i:4:p:365-383:n:1002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.