IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v71y2022i2p376-394.html
   My bibliography  Save this article

Real‐time prediction of severe influenza epidemics using extreme value statistics

Author

Listed:
  • Maud Thomas
  • Holger Rootzén

Abstract

Each year, seasonal influenza epidemics cause hundreds of thousands of deaths worldwide and put high loads on health care systems. A main concern for resource planning is the risk of exceptionally severe epidemics. Taking advantage of recent results on multivariate Generalized Pareto models in extreme value statistics we develop methods for real‐time prediction of the risk that an ongoing influenza epidemic will be exceptionally severe and for real‐time detection of anomalous epidemics and use them for prediction and detection of anomalies for influenza epidemics in France. Quality of predictions is assessed on observed and simulated data.

Suggested Citation

  • Maud Thomas & Holger Rootzén, 2022. "Real‐time prediction of severe influenza epidemics using extreme value statistics," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 376-394, March.
  • Handle: RePEc:bla:jorssc:v:71:y:2022:i:2:p:376-394
    DOI: 10.1111/rssc.12537
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12537
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12537?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Takaya Saito & Marc Rehmsmeier, 2015. "The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-21, March.
    2. Rootzen, Holger & Segers, Johan & Wadsworth, Jennifer, 2018. "Multivariate peaks over thresholds models," LIDAM Reprints ISBA 2018005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Andrew Rambaut & Oliver G. Pybus & Martha I. Nelson & Cecile Viboud & Jeffery K. Taubenberger & Edward C. Holmes, 2008. "The genomic and epidemiological dynamics of human influenza A virus," Nature, Nature, vol. 453(7195), pages 615-619, May.
    4. Maud Thomas & Magali Lemaitre & Mark L Wilson & Cécile Viboud & Youri Yordanov & Hans Wackernagel & Fabrice Carrat, 2016. "Applications of Extreme Value Theory in Public Health," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-7, July.
    5. Brodin, Erik & Rootzén, Holger, 2009. "Univariate and bivariate GPD methods for predicting extreme wind storm losses," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 345-356, June.
    6. Jiangpeng Chen & Xun Lei & Li Zhang & Bin Peng, 2015. "Using Extreme Value Theory Approaches to Forecast the Probability of Outbreak of Highly Pathogenic Influenza in Zhejiang, China," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-10, February.
    7. René Michel, 2009. "Parametric Estimation Procedures in Multivariate Generalized Pareto Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 60-75, March.
    8. Kyriaki Kalimeri & Matteo Delfino & Ciro Cattuto & Daniela Perrotta & Vittoria Colizza & Caroline Guerrisi & Clement Turbelin & Jim Duggan & John Edmunds & Chinelo Obi & Richard Pebody & Ana O Franco , 2019. "Unsupervised extraction of epidemic syndromes from participatory influenza surveillance self-reported symptoms," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-21, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rootzen, Holger & Segers, Johan & Wadsworth, Jenny, 2016. "Multivariate peaks over thresholds models," LIDAM Discussion Papers ISBA 2016018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    3. Jie-Huei Wang & Cheng-Yu Liu & You-Ruei Min & Zih-Han Wu & Po-Lin Hou, 2024. "Cancer Diagnosis by Gene-Environment Interactions via Combination of SMOTE-Tomek and Overlapped Group Screening Approaches with Application to Imbalanced TCGA Clinical and Genomic Data," Mathematics, MDPI, vol. 12(14), pages 1-24, July.
    4. Le, Hong Hanh & Viviani, Jean-Laurent, 2018. "Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios," Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
    5. Kin Keung Lai & Ming Wang & Jiangze Du, 2019. "Modeling and Predicting Infectious Diseases Cases with Climatic Factors in Hong Kong," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 23(1), pages 17147-17150, November.
    6. João Chang Junior & Fábio Binuesa & Luiz Fernando Caneo & Aida Luiza Ribeiro Turquetto & Elisandra Cristina Trevisan Calvo Arita & Aline Cristina Barbosa & Alfredo Manoel da Silva Fernandes & Evelinda, 2020. "Improving preoperative risk-of-death prediction in surgery congenital heart defects using artificial intelligence model: A pilot study," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-21, September.
    7. Arthur De Sá Ferreira & Ney Meziat-Filho & Ana Paula Antunes Ferreira, 2021. "Double threshold receiver operating characteristic plot for three-modal continuous predictors," Computational Statistics, Springer, vol. 36(3), pages 2231-2245, September.
    8. Sebastian Engelke & Stanislav Volgushev, 2022. "Structure learning for extremal tree models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 2055-2087, November.
    9. Fan, Xudong & Wang, Xiaowei & Zhang, Xijin & ASCE Xiong (Bill) Yu, P.E.F., 2022. "Machine learning based water pipe failure prediction: The effects of engineering, geology, climate and socio-economic factors," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    10. Zhang, Han, 2021. "How Using Machine Learning Classification as a Variable in Regression Leads to Attenuation Bias and What to Do About It," SocArXiv 453jk, Center for Open Science.
    11. Joseph A. Lewnard & Vennis Hong & Jeniffer S. Kim & Sally F. Shaw & Bruno Lewin & Harpreet Takhar & Marc Lipsitch & Sara Y. Tartof, 2023. "Increased vaccine sensitivity of an emerging SARS-CoV-2 variant," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Daniela Castro-Camilo & Raphaël Huser & Håvard Rue, 2019. "A Spliced Gamma-Generalized Pareto Model for Short-Term Extreme Wind Speed Probabilistic Forecasting," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 517-534, September.
    13. Masabho P Milali & Samson S Kiware & Nicodem J Govella & Fredros Okumu & Naveen Bansal & Serdar Bozdag & Jacques D Charlwood & Marta F Maia & Sheila B Ogoma & Floyd E Dowell & George F Corliss & Maggy, 2020. "An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-16, June.
    14. Daniel R Jeske, 2018. "Metrics Used When Evaluating the Performance of Statistical Classifiers," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 8(1), pages 7-9, August.
    15. Juliet Chebet Moso & Stéphane Cormier & Cyril de Runz & Hacène Fouchal & John Mwangi Wandeto, 2021. "Anomaly Detection on Data Streams for Smart Agriculture," Agriculture, MDPI, vol. 11(11), pages 1-17, November.
    16. Kajal Lahiri & Cheng Yang, 2023. "ROC and PRC Approaches to Evaluate Recession Forecasts," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 19(2), pages 119-148, September.
    17. Tzu-Hsuan Lin & Jehn-Ruey Jiang, 2021. "Credit Card Fraud Detection with Autoencoder and Probabilistic Random Forest," Mathematics, MDPI, vol. 9(21), pages 1-16, October.
    18. Robert A. Blair & Nicholas Sambanis, 2021. "Is Theory Useful for Conflict Prediction? A Response to Beger, Morgan, and Ward," Journal of Conflict Resolution, Peace Science Society (International), vol. 65(7-8), pages 1427-1453, August.
    19. Mieke Deschepper & Willem Waegeman & Dirk Vogelaers & Kristof Eeckloo, 2020. "Using structured pathology data to predict hospital-wide mortality at admission," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-11, June.
    20. Buch-Kromann, Tine & Guillén, Montserrat & Linton, Oliver & Nielsen, Jens Perch, 2011. "Multivariate density estimation using dimension reducing information and tail flattening transformations," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 99-110, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:71:y:2022:i:2:p:376-394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.