A rank-based approach to estimating monotone individualized two treatment regimes
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2020.107015
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Baqun Zhang & Anastasios A. Tsiatis & Eric B. Laber & Marie Davidian, 2012. "A Robust Method for Estimating Optimal Treatment Regimes," Biometrics, The International Biometric Society, vol. 68(4), pages 1010-1018, December.
- E. B. Laber & Y. Q. Zhao, 2015. "Tree-based methods for individualized treatment regimes," Biometrika, Biometrika Trust, vol. 102(3), pages 501-514.
- Zhilan Lou & Jun Shao & Menggang Yu, 2018. "Optimal treatment assignment to maximize expected outcome with multiple treatments," Biometrics, The International Biometric Society, vol. 74(2), pages 506-516, June.
- Tianxi Cai & Lu Tian & L. J. Wei, 2005. "Semiparametric Box–Cox power transformation models for censored survival observations," Biometrika, Biometrika Trust, vol. 92(3), pages 619-632, September.
- Ying-Qi Zhao & Donglin Zeng & Eric B. Laber & Michael R. Kosorok, 2015. "New Statistical Learning Methods for Estimating Optimal Dynamic Treatment Regimes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 583-598, June.
- Caiyun Fan & Wenbin Lu & Rui Song & Yong Zhou, 2017. "Concordance-assisted learning for estimating optimal individualized treatment regimes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1565-1582, November.
- Xin Zhou & Nicole Mayer-Hamblett & Umer Khan & Michael R. Kosorok, 2017. "Residual Weighted Learning for Estimating Individualized Treatment Rules," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 169-187, January.
- Yingqi Zhao & Donglin Zeng & A. John Rush & Michael R. Kosorok, 2012. "Estimating Individualized Treatment Rules Using Outcome Weighted Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1106-1118, September.
- Y. Q. Zhao & D. Zeng & E. B. Laber & R. Song & M. Yuan & M. R. Kosorok, 2015. "Doubly robust learning for estimating individualized treatment with censored data," Biometrika, Biometrika Trust, vol. 102(1), pages 151-168.
- Han, Aaron K., 1987. "Non-parametric analysis of a generalized regression model : The maximum rank correlation estimator," Journal of Econometrics, Elsevier, vol. 35(2-3), pages 303-316, July.
- Horowitz, Joel L, 1992. "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, Econometric Society, vol. 60(3), pages 505-531, May.
- Runchao Jiang & Wenbin Lu & Rui Song & Marie Davidian, 2017. "On estimation of optimal treatment regimes for maximizing t-year survival probability," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1165-1185, September.
- Sherman, Robert P, 1993. "The Limiting Distribution of the Maximum Rank Correlation Estimator," Econometrica, Econometric Society, vol. 61(1), pages 123-137, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yunan Wu & Lan Wang, 2021. "Resampling‐based confidence intervals for model‐free robust inference on optimal treatment regimes," Biometrics, The International Biometric Society, vol. 77(2), pages 465-476, June.
- Giorgos Bakoyannis, 2023. "Estimating optimal individualized treatment rules with multistate processes," Biometrics, The International Biometric Society, vol. 79(4), pages 2830-2842, December.
- Qian Guan & Eric B. Laber & Brian J. Reich, 2016. "Comment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 936-942, July.
- Xinyang Huang & Jin Xu, 2020. "Estimating individualized treatment rules with risk constraint," Biometrics, The International Biometric Society, vol. 76(4), pages 1310-1318, December.
- Xin Chen & Rui Song & Jiajia Zhang & Swann Arp Adams & Liuquan Sun & Wenbin Lu, 2022. "On estimating optimal regime for treatment initiation time based on restricted mean residual lifetime," Biometrics, The International Biometric Society, vol. 78(4), pages 1377-1389, December.
- Dana Johnson & Wenbin Lu & Marie Davidian, 2023. "A general framework for subgroup detection via one‐step value difference estimation," Biometrics, The International Biometric Society, vol. 79(3), pages 2116-2126, September.
- Emily L. Butler & Eric B. Laber & Sonia M. Davis & Michael R. Kosorok, 2018. "Incorporating Patient Preferences into Estimation of Optimal Individualized Treatment Rules," Biometrics, The International Biometric Society, vol. 74(1), pages 18-26, March.
- Zhen Li & Jie Chen & Eric Laber & Fang Liu & Richard Baumgartner, 2023. "Optimal Treatment Regimes: A Review and Empirical Comparison," International Statistical Review, International Statistical Institute, vol. 91(3), pages 427-463, December.
- Yingchao Zhong & Chang Wang & Lu Wang, 2021. "Survival Augmented Patient Preference Incorporated Reinforcement Learning to Evaluate Tailoring Variables for Personalized Healthcare," Stats, MDPI, vol. 4(4), pages 1-17, September.
- Q. Clairon & R. Henderson & N. J. Young & E. D. Wilson & C. J. Taylor, 2021. "Adaptive treatment and robust control," Biometrics, The International Biometric Society, vol. 77(1), pages 223-236, March.
- Jingxiang Chen & Haoda Fu & Xuanyao He & Michael R. Kosorok & Yufeng Liu, 2018. "Estimating individualized treatment rules for ordinal treatments," Biometrics, The International Biometric Society, vol. 74(3), pages 924-933, September.
- Shuxiao Chen & Bo Zhang, 2021. "Estimating and Improving Dynamic Treatment Regimes With a Time-Varying Instrumental Variable," Papers 2104.07822, arXiv.org.
- Jin Wang & Donglin Zeng & D. Y. Lin, 2022. "Semiparametric single-index models for optimal treatment regimens with censored outcomes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 744-763, October.
- Sokbae Lee & Myung Hwan Seo & Youngki Shin, 2017.
"Correction,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 883-883, April.
- Hwan Seo, Myung, 2011. "Estimation Of Nonlinear Error Correction Models," Econometric Theory, Cambridge University Press, vol. 27(2), pages 201-234, April.
- Youngki Shin, 2009. "Length-bias Correction in Transformation Models with Supplementary Data," Econometric Reviews, Taylor & Francis Journals, vol. 28(6), pages 658-681.
- Seo, Myunghwan, 2006. "Bootstrap testing for the null of no cointegration in a threshold vector error correction model," Journal of Econometrics, Elsevier, vol. 134(1), pages 129-150, September.
- Myung Hwan Seo, 2007. "Estimation of Nonlinear Error CorrectionModels," STICERD - Econometrics Paper Series 517, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Seo, Myung Hwan, 2007. "Estimation of nonlinear error correction models," LSE Research Online Documents on Economics 6802, London School of Economics and Political Science, LSE Library.
- Xin Qiu & Donglin Zeng & Yuanjia Wang, 2018. "Estimation and evaluation of linear individualized treatment rules to guarantee performance," Biometrics, The International Biometric Society, vol. 74(2), pages 517-528, June.
- Coppejans, Mark, 2001. "Estimation of the binary response model using a mixture of distributions estimator (MOD)," Journal of Econometrics, Elsevier, vol. 102(2), pages 231-269, June.
- repec:hal:spmain:info:hdl:2441/3vl5fe4i569nbr005tctlc8ll5 is not listed on IDEAS
- Weibin Mo & Yufeng Liu, 2022. "Efficient learning of optimal individualized treatment rules for heteroscedastic or misspecified treatment‐free effect models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 440-472, April.
- Shakeeb Khan & Arnaud Maurel & Yichong Zhang, 2023.
"Informational Content of Factor Structures in Simultaneous Binary Response Models,"
Advances in Econometrics, in: Essays in Honor of Joon Y. Park: Econometric Methodology in Empirical Applications, volume 45, pages 385-410,
Emerald Group Publishing Limited.
- Shakeeb Khan & Arnaud Maurel & Yichong Zhang, 2019. "Informational Content of Factor Structures in Simultaneous Binary Response Models," Papers 1910.01318, arXiv.org, revised Mar 2022.
- Shakeeb Khan & Arnaud Maurel & Yichong Zhang, 2021. "Informational Content of Factor Structures in Simultaneous Binary Response Models," NBER Working Papers 28327, National Bureau of Economic Research, Inc.
- Khan, Shakeeb & Maurel, Arnaud & Zhang, Yichong, 2020. "Informational Content of Factor Structures in Simultaneous Binary Response Models," IZA Discussion Papers 14008, Institute of Labor Economics (IZA).
- Shakeeb Khan & Arnaud Maurel & Yichong Zhang, 2019. "Informational Content of Factor Structures in Simultaneous Binary Response Models," Boston College Working Papers in Economics 985, Boston College Department of Economics.
- Patrick Bajari & Jeremy Fox & Stephen Ryan, 2008.
"Evaluating wireless carrier consolidation using semiparametric demand estimation,"
Quantitative Marketing and Economics (QME), Springer, vol. 6(4), pages 299-338, December.
- Patrick Bajari & Jeremy T. Fox & Stephen Ryan, 2006. "Evaluating Wireless Carrier Consolidation Using Semiparametric Demand Estimation," NBER Working Papers 12425, National Bureau of Economic Research, Inc.
- Muxuan Liang & Menggang Yu, 2023. "Relative contrast estimation and inference for treatment recommendation," Biometrics, The International Biometric Society, vol. 79(4), pages 2920-2932, December.
More about this item
Keywords
Generalized regression; Individualized treatment rule; Outlier; Personalized medicine; Rank correlation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:151:y:2020:i:c:s0167947320301067. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.