IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v112y2017i518p769-778.html
   My bibliography  Save this article

Change-Plane Analysis for Subgroup Detection and Sample Size Calculation

Author

Listed:
  • Ailin Fan
  • Rui Song
  • Wenbin Lu

Abstract

We propose a systematic method for testing and identifying a subgroup with an enhanced treatment effect. We adopts a change-plane technique to first test the existence of a subgroup, and then identify the subgroup if the null hypothesis on nonexistence of such a subgroup is rejected. A semiparametric model is considered for the response with an unspecified baseline function and an interaction between a subgroup indicator and treatment. A doubly robust test statistic is constructed based on this model, and asymptotic distributions of the test statistic under both null and local alternative hypotheses are derived. Moreover, a sample size calculation method for subgroup detection is developed based on the proposed statistic. The finite sample performance of the proposed test is evaluated via simulations. Finally, the proposed methods for subgroup identification and sample size calculation are applied to a data from an AIDS study.

Suggested Citation

  • Ailin Fan & Rui Song & Wenbin Lu, 2017. "Change-Plane Analysis for Subgroup Detection and Sample Size Calculation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 769-778, April.
  • Handle: RePEc:taf:jnlasa:v:112:y:2017:i:518:p:769-778
    DOI: 10.1080/01621459.2016.1166115
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2016.1166115
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2016.1166115?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. A. Murphy, 2003. "Optimal dynamic treatment regimes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 331-355, May.
    2. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    3. Xiao Song & Margaret Sullivan Pepe, 2004. "Evaluating Markers for Selecting a Patient's Treatment," Biometrics, The International Biometric Society, vol. 60(4), pages 874-883, December.
    4. Jushan Bai, 1997. "Estimation Of A Change Point In Multiple Regression Models," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 551-563, November.
    5. Juan Shen & Xuming He, 2015. "Inference for Subgroup Analysis With a Structured Logistic-Normal Mixture Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 303-312, March.
    6. Robert B. Davies, 2002. "Hypothesis testing when a nuisance parameter is present only under the alternative: Linear model case," Biometrika, Biometrika Trust, vol. 89(2), pages 484-489, June.
    7. Xiao Song & Margaret Pepe, 2004. "Evaluating Markers for Selecting a Patient's Treatment," UW Biostatistics Working Paper Series 1029, Berkeley Electronic Press.
    8. Andrews, Donald W K, 2001. "Testing When a Parameter Is on the Boundary of the Maintained Hypothesis," Econometrica, Econometric Society, vol. 69(3), pages 683-734, May.
    9. Lihui Zhao & Lu Tian & Tianxi Cai & Brian Claggett & L. J. Wei, 2013. "Effectively Selecting a Target Population for a Future Comparative Study," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 527-539, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingxiang Chen & Yufeng Liu & Donglin Zeng & Rui Song & Yingqi Zhao & Michael R. Kosorok, 2016. "Comment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 942-947, July.
    2. Ying Huang & Juhee Cho & Youyi Fong, 2021. "Threshold‐based subgroup testing in logistic regression models in two‐phase sampling designs," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(2), pages 291-311, March.
    3. Peng Jin & Wenbin Lu & Yu Chen & Mengling Liu, 2023. "Change‐plane analysis for subgroup detection with a continuous treatment," Biometrics, The International Biometric Society, vol. 79(3), pages 1920-1933, September.
    4. Dana Johnson & Wenbin Lu & Marie Davidian, 2023. "A general framework for subgroup detection via one‐step value difference estimation," Biometrics, The International Biometric Society, vol. 79(3), pages 2116-2126, September.
    5. Xu Gao & Weining Shen & Jing Ning & Ziding Feng & Jianhua Hu, 2022. "Addressing patient heterogeneity in disease predictive model development," Biometrics, The International Biometric Society, vol. 78(3), pages 1045-1055, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Jin & Wenbin Lu & Yu Chen & Mengling Liu, 2023. "Change‐plane analysis for subgroup detection with a continuous treatment," Biometrics, The International Biometric Society, vol. 79(3), pages 1920-1933, September.
    2. Ruo-fan Wu & Ming Zheng & Wen Yu, 2016. "Subgroup Analysis with Time-to-Event Data Under a Logistic-Cox Mixture Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 863-878, September.
    3. Ying Huang & Juhee Cho & Youyi Fong, 2021. "Threshold‐based subgroup testing in logistic regression models in two‐phase sampling designs," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(2), pages 291-311, March.
    4. Shengli An & Peter Zhang & Hong-Bin Fang, 2023. "Subgroup Identification in Survival Outcome Data Based on Concordance Probability Measurement," Mathematics, MDPI, vol. 11(13), pages 1-10, June.
    5. Xu Gao & Weining Shen & Jing Ning & Ziding Feng & Jianhua Hu, 2022. "Addressing patient heterogeneity in disease predictive model development," Biometrics, The International Biometric Society, vol. 78(3), pages 1045-1055, September.
    6. Roland A. Matsouaka & Junlong Li & Tianxi Cai, 2014. "Evaluating marker-guided treatment selection strategies," Biometrics, The International Biometric Society, vol. 70(3), pages 489-499, September.
    7. Juan Shen & Xuming He, 2015. "Inference for Subgroup Analysis With a Structured Logistic-Normal Mixture Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 303-312, March.
    8. Meitz, Mika & Saikkonen, Pentti, 2021. "Testing for observation-dependent regime switching in mixture autoregressive models," Journal of Econometrics, Elsevier, vol. 222(1), pages 601-624.
    9. Dana Johnson & Wenbin Lu & Marie Davidian, 2023. "A general framework for subgroup detection via one‐step value difference estimation," Biometrics, The International Biometric Society, vol. 79(3), pages 2116-2126, September.
    10. Bunzel, Helle & Iglesias, Emma M., 2006. "Testing for Breaks Using Alternating Observations," Staff General Research Papers Archive 12694, Iowa State University, Department of Economics.
    11. Ying Huang & Eric Laber, 2016. "Personalized Evaluation of Biomarker Value: A Cost-Benefit Perspective," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(1), pages 43-65, June.
    12. Veronika Skrivankova & Patrick J. Heagerty, 2018. "Single index methods for evaluation of marker†guided treatment rules based on multivariate marker panels," Biometrics, The International Biometric Society, vol. 74(2), pages 663-672, June.
    13. Jingxiang Chen & Yufeng Liu & Donglin Zeng & Rui Song & Yingqi Zhao & Michael R. Kosorok, 2016. "Comment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 942-947, July.
    14. Garcia, Rene, 1998. "Asymptotic Null Distribution of the Likelihood Ratio Test in Markov Switching Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(3), pages 763-788, August.
    15. Benati, Luca, 2007. "Drift and breaks in labor productivity," Journal of Economic Dynamics and Control, Elsevier, vol. 31(8), pages 2847-2877, August.
    16. Dickinson, David & Liu, Jia, 2007. "The real effects of monetary policy in China: An empirical analysis," China Economic Review, Elsevier, vol. 18(1), pages 87-111.
    17. Bill Russell & Dooruj Rambaccussing, 2019. "Breaks and the statistical process of inflation: the case of estimating the ‘modern’ long-run Phillips curve," Empirical Economics, Springer, vol. 56(5), pages 1455-1475, May.
    18. Koo, Bonsoo & Seo, Myung Hwan, 2015. "Structural-break models under mis-specification: Implications for forecasting," Journal of Econometrics, Elsevier, vol. 188(1), pages 166-181.
    19. Ying Huang & Youyi Fong, 2014. "Identifying optimal biomarker combinations for treatment selection via a robust kernel method," Biometrics, The International Biometric Society, vol. 70(4), pages 891-901, December.
    20. Ronald Bewley & Minxian Yang, 2006. "A hybrid forecasting approach for piece-wise stationary time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(7), pages 513-527.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:112:y:2017:i:518:p:769-778. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.