IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v69y2020i3p681-696.html
   My bibliography  Save this article

A spatially varying distributed lag model with application to an air pollution and term low birth weight study

Author

Listed:
  • Joshua L. Warren
  • Thomas J. Luben
  • Howard H. Chang

Abstract

Distributed lag models have been used to identify critical pregnancy periods of exposure (i.e. critical exposure windows) to air pollution in studies of pregnancy outcomes. However, much of the previous work in this area has ignored the possibility of spatial variability in the lagged health effect parameters that may result from exposure characteristics and/or residual confounding. We develop a spatially varying Gaussian process model for critical windows called ‘SpGPCW’ and use it to investigate geographic variability in the association between term low birth weight and average weekly concentrations of ozone and PM2.5 during pregnancy by using birth records from North Carolina. SpGPCW is designed to accommodate areal level spatial correlation between lagged health effect parameters and temporal smoothness in risk estimation across pregnancy. Through simulation and a real data application, we show that the consequences of ignoring spatial variability in the lagged health effect parameters include less reliable inference for the parameters and diminished ability to identify true critical window sets, and we investigate the use of existing Bayesian model comparison techniques as tools for determining the presence of spatial variability. We find that exposure to PM2.5 is associated with elevated term low birth weight risk in selected weeks and counties and that ignoring spatial variability results in null associations during these periods. An R package (SpGPCW) has been developed to implement the new method.

Suggested Citation

  • Joshua L. Warren & Thomas J. Luben & Howard H. Chang, 2020. "A spatially varying distributed lag model with application to an air pollution and term low birth weight study," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(3), pages 681-696, June.
  • Handle: RePEc:bla:jorssc:v:69:y:2020:i:3:p:681-696
    DOI: 10.1111/rssc.12407
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12407
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12407?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joshua Warren & Montserrat Fuentes & Amy Herring & Peter Langlois, 2012. "Spatial-Temporal Modeling of the Association between Air Pollution Exposure and Preterm Birth: Identifying Critical Windows of Exposure," Biometrics, The International Biometric Society, vol. 68(4), pages 1157-1167, December.
    2. John Geweke, 1991. "Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments," Staff Report 148, Federal Reserve Bank of Minneapolis.
    3. Lelys Bravo Guenni & Susan J. Simmons & Joshua Warren & Montserrat Fuentes & Amy Herring & Peter Langlois, 2012. "Bayesian spatial–temporal model for cardiac congenital anomalies and ambient air pollution risk assessment," Environmetrics, John Wiley & Sons, Ltd., vol. 23(8), pages 673-684, December.
    4. Leo Kavanagh & Duncan Lee & Gwilym Pryce, 2016. "Is Poverty Decentralizing? Quantifying Uncertainty in the Decentralization of Urban Poverty," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 106(6), pages 1286-1298, November.
    5. Yin‐Hsiu Chen & Bhramar Mukherjee & Veronica J. Berrocal, 2019. "Distributed lag interaction models with two pollutants," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(1), pages 79-97, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Danielle Demateis & Kayleigh P. Keller & David Rojas‐Rueda & Marianthi‐Anna Kioumourtzoglou & Ander Wilson, 2024. "Penalized distributed lag interaction model: Air pollution, birth weight, and neighborhood vulnerability," Environmetrics, John Wiley & Sons, Ltd., vol. 35(4), June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Mork & Ander Wilson, 2023. "Estimating perinatal critical windows of susceptibility to environmental mixtures via structured Bayesian regression tree pairs," Biometrics, The International Biometric Society, vol. 79(1), pages 449-461, March.
    2. Yuyan Wang & Akhgar Ghassabian & Bo Gu & Yelena Afanasyeva & Yiwei Li & Leonardo Trasande & Mengling Liu, 2023. "Semiparametric distributed lag quantile regression for modeling time‐dependent exposure mixtures," Biometrics, The International Biometric Society, vol. 79(3), pages 2619-2632, September.
    3. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    4. Alquran, Marwan & Al-Khaled, Kamel & Sardar, Tridip & Chattopadhyay, Joydev, 2015. "Revisited Fisher’s equation in a new outlook: A fractional derivative approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 81-93.
    5. Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez, 2001. "Comparing dynamic equilibrium economies to data," FRB Atlanta Working Paper 2001-23, Federal Reserve Bank of Atlanta.
    6. Chang, Yoosoon & Maih, Junior & Tan, Fei, 2021. "Origins of monetary policy shifts: A New approach to regime switching in DSGE models," Journal of Economic Dynamics and Control, Elsevier, vol. 133(C).
    7. Atahan Afsar; José Elías Gallegos; Richard Jaimes; Edgar Silgado Gómez & José Elías Gallegos & Richard Jaimes & Edgar Silgado Gómez, 2020. "Reconciling Empirics and Theory: The Behavioral Hybrid New Keynesian Model," Vniversitas Económica, Universidad Javeriana - Bogotá, vol. 0(0), pages 1-41, December.
    8. Bai, Yizhou & Xue, Cheng, 2021. "An empirical study on the regulated Chinese agricultural commodity futures market based on skew Ornstein-Uhlenbeck model," Research in International Business and Finance, Elsevier, vol. 57(C).
    9. Egberto Alexander Riveros Saavedra, 2012. "¿Responde el Banco de la República a los movimientos en la tasa de cambio real?," Revista ESPE - Ensayos Sobre Política Económica, Banco de la República, vol. 30(69), pages 150-194, December.
    10. Yoosoon Chang & Fei Tan & Xin Wei, 2018. "State Space Models with Endogenous Regime Switching," CAEPR Working Papers 2018-012, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    11. Michael T. Owyang & Jeremy Piger & Howard J. Wall, 2005. "Business Cycle Phases in U.S. States," The Review of Economics and Statistics, MIT Press, vol. 87(4), pages 604-616, November.
    12. Mário Castro & Ming-Hui Chen & Joseph G. Ibrahim & John P. Klein, 2014. "Bayesian Transformation Models for Multivariate Survival Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 187-199, March.
    13. Aßmann, Christian & Boysen-Hogrefe, Jens & Pape, Markus, 2012. "The directional identification problem in Bayesian factor analysis: An ex-post approach," Kiel Working Papers 1799, Kiel Institute for the World Economy (IfW Kiel).
    14. Massimiliano Marcellino & Mario Porqueddu & Fabrizio Venditti, 2016. "Short-Term GDP Forecasting With a Mixed-Frequency Dynamic Factor Model With Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 118-127, January.
    15. Kimberly A. Kaufeld & Montse Fuentes & Brian J. Reich & Amy H. Herring & Gary M. Shaw & Maria A. Terres, 2017. "A Multivariate Dynamic Spatial Factor Model for Speciated Pollutants and Adverse Birth Outcomes," IJERPH, MDPI, vol. 14(9), pages 1-16, September.
    16. Kerenaftali Klein & Stefanie Hennig & Sanjoy Ketan Paul, 2016. "A Bayesian Modelling Approach with Balancing Informative Prior for Analysing Imbalanced Data," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-12, April.
    17. Ander Wilson & Brian J. Reich, 2014. "Confounder selection via penalized credible regions," Biometrics, The International Biometric Society, vol. 70(4), pages 852-861, December.
    18. Reif Magnus, 2021. "Macroeconomic uncertainty and forecasting macroeconomic aggregates," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(2), pages 1-20, April.
    19. Michael T. Owyang, 2002. "Modeling Volcker as a non-absorbing state: agnostic identification of a Markov-switching VAR," Working Papers 2002-018, Federal Reserve Bank of St. Louis.
    20. Wang, Min & Sun, Xiaoqian, 2012. "Bayesian inference for the correlation coefficient in two seemingly unrelated regressions," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2442-2453.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:69:y:2020:i:3:p:681-696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.