IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v68y2019i1p79-97.html
   My bibliography  Save this article

Distributed lag interaction models with two pollutants

Author

Listed:
  • Yin‐Hsiu Chen
  • Bhramar Mukherjee
  • Veronica J. Berrocal

Abstract

Distributed lag models (DLMs) have been widely used in environmental epidemiology to quantify the lagged effects of air pollution on a health outcome of interest such as mortality and morbidity. Most previous DLM approaches consider only one pollutant at a time. We propose a distributed lag interaction model to characterize the joint lagged effect of two pollutants. One natural way to model the interaction surface is by assuming that the underlying basis functions are tensor products of the basis functions that generate the main effect distributed lag functions. We extend Tukey's 1 degree‐of‐freedom interaction structure to the two‐dimensional DLM context. We also consider shrinkage versions of the two to allow departure from the specified Tukey interaction structure and achieve bias—variance trade‐off. We derive the marginal lag effects of one pollutant when the other pollutant is fixed at certain quantiles. In a simulation study, we show that the shrinkage methods have better average performance in terms of mean‐squared error across various scenarios. We illustrate the methods proposed by using the ‘National morbidity, mortality, and air pollution study’ data to model the joint effects of particulate matter and ozone on mortality count in Chicago, Illinois, from 1987 to 2000.

Suggested Citation

  • Yin‐Hsiu Chen & Bhramar Mukherjee & Veronica J. Berrocal, 2019. "Distributed lag interaction models with two pollutants," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(1), pages 79-97, January.
  • Handle: RePEc:bla:jorssc:v:68:y:2019:i:1:p:79-97
    DOI: 10.1111/rssc.12297
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12297
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12297?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Mork & Ander Wilson, 2023. "Estimating perinatal critical windows of susceptibility to environmental mixtures via structured Bayesian regression tree pairs," Biometrics, The International Biometric Society, vol. 79(1), pages 449-461, March.
    2. Yuyan Wang & Akhgar Ghassabian & Bo Gu & Yelena Afanasyeva & Yiwei Li & Leonardo Trasande & Mengling Liu, 2023. "Semiparametric distributed lag quantile regression for modeling time‐dependent exposure mixtures," Biometrics, The International Biometric Society, vol. 79(3), pages 2619-2632, September.
    3. Joshua L. Warren & Thomas J. Luben & Howard H. Chang, 2020. "A spatially varying distributed lag model with application to an air pollution and term low birth weight study," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(3), pages 681-696, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:68:y:2019:i:1:p:79-97. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.