IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v68y2012i4p1157-1167.html
   My bibliography  Save this article

Spatial-Temporal Modeling of the Association between Air Pollution Exposure and Preterm Birth: Identifying Critical Windows of Exposure

Author

Listed:
  • Joshua Warren
  • Montserrat Fuentes
  • Amy Herring
  • Peter Langlois

Abstract

No abstract is available for this item.

Suggested Citation

  • Joshua Warren & Montserrat Fuentes & Amy Herring & Peter Langlois, 2012. "Spatial-Temporal Modeling of the Association between Air Pollution Exposure and Preterm Birth: Identifying Critical Windows of Exposure," Biometrics, The International Biometric Society, vol. 68(4), pages 1157-1167, December.
  • Handle: RePEc:bla:biomet:v:68:y:2012:i:4:p:1157-1167
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2012.01774.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Montserrat Fuentes & Adrian E. Raftery, 2005. "Model Evaluation and Spatial Interpolation by Bayesian Combination of Observations with Outputs from Numerical Models," Biometrics, The International Biometric Society, vol. 61(1), pages 36-45, March.
    2. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Danielle Demateis & Kayleigh P. Keller & David Rojas‐Rueda & Marianthi‐Anna Kioumourtzoglou & Ander Wilson, 2024. "Penalized distributed lag interaction model: Air pollution, birth weight, and neighborhood vulnerability," Environmetrics, John Wiley & Sons, Ltd., vol. 35(4), June.
    2. Daniel Mork & Ander Wilson, 2023. "Estimating perinatal critical windows of susceptibility to environmental mixtures via structured Bayesian regression tree pairs," Biometrics, The International Biometric Society, vol. 79(1), pages 449-461, March.
    3. Kimberly A. Kaufeld & Montse Fuentes & Brian J. Reich & Amy H. Herring & Gary M. Shaw & Maria A. Terres, 2017. "A Multivariate Dynamic Spatial Factor Model for Speciated Pollutants and Adverse Birth Outcomes," IJERPH, MDPI, vol. 14(9), pages 1-16, September.
    4. Joshua L. Warren & Thomas J. Luben & Howard H. Chang, 2020. "A spatially varying distributed lag model with application to an air pollution and term low birth weight study," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(3), pages 681-696, June.
    5. Ander Wilson & Brian J. Reich, 2014. "Confounder selection via penalized credible regions," Biometrics, The International Biometric Society, vol. 70(4), pages 852-861, December.
    6. Yuyan Wang & Akhgar Ghassabian & Bo Gu & Yelena Afanasyeva & Yiwei Li & Leonardo Trasande & Mengling Liu, 2023. "Semiparametric distributed lag quantile regression for modeling time‐dependent exposure mixtures," Biometrics, The International Biometric Society, vol. 79(3), pages 2619-2632, September.
    7. Luke B. Smith & Brian J. Reich & Amy H. Herring & Peter H. Langlois & Montserrat Fuentes, 2015. "Multilevel quantile function modeling with application to birth outcomes," Biometrics, The International Biometric Society, vol. 71(2), pages 508-519, June.
    8. Menglu Liang & Zheng Li & Lijun Zhang & Ming Wang, 2024. "A Spatial–Temporal Bayesian Model for a Case-Crossover Design with Application to Extreme Heat and Claims Data," Stats, MDPI, vol. 7(4), pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choi, Jungsoon & Fuentes, Montserrat & Reich, Brian J., 2009. "Spatial-temporal association between fine particulate matter and daily mortality," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2989-3000, June.
    2. David Kaplan & Jianshen Chen, 2012. "A Two-Step Bayesian Approach for Propensity Score Analysis: Simulations and Case Study," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 581-609, July.
    3. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    4. Tommi Härkänen & Anna But & Jari Haukka, 2017. "Non-parametric Bayesian Intensity Model: Exploring Time-to-Event Data on Two Time Scales," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 798-814, September.
    5. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    6. Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
    7. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    8. Francois Olivier & Laval Guillaume, 2011. "Deviance Information Criteria for Model Selection in Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-25, July.
    9. Ferraz, V.R.S. & Moura, F.A.S., 2012. "Small area estimation using skew normal models," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2864-2874.
    10. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    11. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    12. Niko Hauzenberger & Florian Huber & Massimiliano Marcellino & Nico Petz, 2025. "Gaussian Process Vector Autoregressions and Macroeconomic Uncertainty," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 43(1), pages 27-43, January.
    13. Li, Yong & Yu, Jun, 2012. "Bayesian hypothesis testing in latent variable models," Journal of Econometrics, Elsevier, vol. 166(2), pages 237-246.
    14. Ander Wilson & Jessica Tryner & Christian L'Orange & John Volckens, 2020. "Bayesian nonparametric monotone regression," Environmetrics, John Wiley & Sons, Ltd., vol. 31(8), December.
    15. Julie Vercelloni & M Julian Caley & Mohsen Kayal & Samantha Low-Choy & Kerrie Mengersen, 2014. "Understanding Uncertainties in Non-Linear Population Trajectories: A Bayesian Semi-Parametric Hierarchical Approach to Large-Scale Surveys of Coral Cover," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-9, November.
    16. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    17. Koop, Gary & Korobilis, Dimitris, 2016. "Model uncertainty in Panel Vector Autoregressive models," European Economic Review, Elsevier, vol. 81(C), pages 115-131.
    18. Joshua C.C. Chan & Angelia L. Grant, 2014. "Issues in Comparing Stochastic Volatility Models Using the Deviance Information Criterion," CAMA Working Papers 2014-51, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    19. Yeow Meng Thum, 2003. "Measuring Progress Toward a Goal," Sociological Methods & Research, , vol. 32(2), pages 153-207, November.
    20. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:68:y:2012:i:4:p:1157-1167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.