IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v81y2019i3p489-517.html
   My bibliography  Save this article

Scalable importance tempering and Bayesian variable selection

Author

Listed:
  • Giacomo Zanella
  • Gareth Roberts

Abstract

We propose a Monte Carlo algorithm to sample from high dimensional probability distributions that combines Markov chain Monte Carlo and importance sampling. We provide a careful theoretical analysis, including guarantees on robustness to high dimensionality, explicit comparison with standard Markov chain Monte Carlo methods and illustrations of the potential improvements in efficiency. Simple and concrete intuition is provided for when the novel scheme is expected to outperform standard schemes. When applied to Bayesian variable‐selection problems, the novel algorithm is orders of magnitude more efficient than available alternative sampling schemes and enables fast and reliable fully Bayesian inferences with tens of thousand regressors.

Suggested Citation

  • Giacomo Zanella & Gareth Roberts, 2019. "Scalable importance tempering and Bayesian variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(3), pages 489-517, July.
  • Handle: RePEc:bla:jorssb:v:81:y:2019:i:3:p:489-517
    DOI: 10.1111/rssb.12316
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12316
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12316?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Rossell & Oriol Abril & Anirban Bhattacharya, 2021. "Approximate Laplace approximations for scalable model selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 853-879, September.
    2. Quan Zhou & Jun Yang & Dootika Vats & Gareth O. Roberts & Jeffrey S. Rosenthal, 2022. "Dimension‐free mixing for high‐dimensional Bayesian variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1751-1784, November.
    3. Gael M. Martin & David T. Frazier & Christian P. Robert, 2022. "Computing Bayes: From Then `Til Now," Monash Econometrics and Business Statistics Working Papers 14/22, Monash University, Department of Econometrics and Business Statistics.
    4. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:81:y:2019:i:3:p:489-517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.