A novel variational Bayesian method for variable selection in logistic regression models
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2018.08.025
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
- Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
- Veronika Ročková & Edward I. George, 2014. "EMVS: The EM Approach to Bayesian Variable Selection," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 828-846, June.
- Nicholas G. Polson & James G. Scott & Jesse Windle, 2013. "Bayesian Inference for Logistic Models Using Pólya--Gamma Latent Variables," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1339-1349, December.
- Tian, Guo-Liang & Tang, Man-Lai & Fang, Hong-Bin & Tan, Ming, 2008. "Efficient methods for estimating constrained parameters with applications to regularized (lasso) logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3528-3542, March.
- David Rossell & Francisco J. Rubio, 2018. "Tractable Bayesian Variable Selection: Beyond Normality," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1742-1758, October.
- David Rossell & Donatello Telesca, 2017. "Nonlocal Priors for High-Dimensional Estimation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 254-265, January.
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
- Latouche, Pierre & Mattei, Pierre-Alexandre & Bouveyron, Charles & Chiquet, Julien, 2016. "Combining a relaxed EM algorithm with Occam’s razor for Bayesian variable selection in high-dimensional regression," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 177-190.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li, Xiaowei & Tang, Junqing & Hu, Xiaojiao & Wang, Wei, 2020. "Assessing intercity multimodal choice behavior in a Touristy City: A factor analysis," Journal of Transport Geography, Elsevier, vol. 86(C).
- Shan Feng & Wenxian Xie & Yufeng Nie, 2024. "Simultaneous Bayesian Clustering and Model Selection with Mixture of Robust Factor Analyzers," Mathematics, MDPI, vol. 12(7), pages 1-23, April.
- Lai, Wei-Ting & Chen, Ray-Bing & Chen, Ying & Koch, Thorsten, 2022. "Variational Bayesian inference for network autoregression models," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bernardi, Mauro & Costola, Michele, 2019. "High-dimensional sparse financial networks through a regularised regression model," SAFE Working Paper Series 244, Leibniz Institute for Financial Research SAFE.
- Qi Zhang & Yihui Zhang & Yemao Xia, 2024. "Bayesian Feature Extraction for Two-Part Latent Variable Model with Polytomous Manifestations," Mathematics, MDPI, vol. 12(5), pages 1-23, March.
- Dufays, Arnaud & Rombouts, Jeroen V.K., 2020. "Relevant parameter changes in structural break models," Journal of Econometrics, Elsevier, vol. 217(1), pages 46-78.
- Posch, Konstantin & Arbeiter, Maximilian & Pilz, Juergen, 2020. "A novel Bayesian approach for variable selection in linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
- Dimitris Korobilis & Kenichi Shimizu, 2022.
"Bayesian Approaches to Shrinkage and Sparse Estimation,"
Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
- Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Working Papers 2021_19, Business School - Economics, University of Glasgow.
- Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Papers 2112.11751, arXiv.org.
- Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Working Paper series 22-02, Rimini Centre for Economic Analysis.
- Korobilis, Dimitris & Shimizu, Kenichi, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," MPRA Paper 111631, University Library of Munich, Germany.
- Uddin, Md Nazir & Gaskins, Jeremy T., 2023. "Shared Bayesian variable shrinkage in multinomial logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
- Diego Vidaurre & Concha Bielza & Pedro Larrañaga, 2013. "A Survey of L1 Regression," International Statistical Review, International Statistical Institute, vol. 81(3), pages 361-387, December.
- M. Marsman & K. Huth & L. J. Waldorp & I. Ntzoufras, 2022. "Objective Bayesian Edge Screening and Structure Selection for Ising Networks," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 47-82, March.
- Nicholas G. Polson & James G. Scott, 2016. "Mixtures, envelopes and hierarchical duality," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 701-727, September.
- Fan, Jianqing & Jiang, Bai & Sun, Qiang, 2022. "Bayesian factor-adjusted sparse regression," Journal of Econometrics, Elsevier, vol. 230(1), pages 3-19.
- Bai, Jushan & Ando, Tomohiro, 2013. "Multifactor asset pricing with a large number of observable risk factors and unobservable common and group-specific factors," MPRA Paper 52785, University Library of Munich, Germany, revised Dec 2013.
- Oguzhan Cepni & I. Ethem Guney & Norman R. Swanson, 2020. "Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 18-36, January.
- Mark F. J. Steel, 2020.
"Model Averaging and Its Use in Economics,"
Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
- Steel, Mark F. J., 2017. "Model Averaging and its Use in Economics," MPRA Paper 81568, University Library of Munich, Germany.
- Steel, Mark F. J., 2017. "Model Averaging and its Use in Economics," MPRA Paper 90110, University Library of Munich, Germany, revised 16 Nov 2018.
- Jean-Pierre Dubé & Sanjog Misra, 2017. "Personalized Pricing and Consumer Welfare," NBER Working Papers 23775, National Bureau of Economic Research, Inc.
- Lee Anthony & Caron Francois & Doucet Arnaud & Holmes Chris, 2012. "Bayesian Sparsity-Path-Analysis of Genetic Association Signal using Generalized t Priors," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(2), pages 1-31, January.
- Dimitris Korobilis & Davide Pettenuzzo, 2020.
"Machine Learning Econometrics: Bayesian algorithms and methods,"
Papers
2004.11486, arXiv.org.
- Korobilis, Dimitris & Pettenuzzo, Davide, 2020. "Machine Learning Econometrics: Bayesian algorithms and methods," MPRA Paper 100165, University Library of Munich, Germany.
- Dimitris Korobilis & Davide Pettenuzzo, 2020. "Machine Learning Econometrics: Bayesian algorithms and methods," Working Papers 130, Brandeis University, Department of Economics and International Business School.
- Dimitris Korobilis & Davide Pettenuzzo, 2020. "Machine Learning Econometrics: Bayesian algorithms and methods," Working Papers 2020_09, Business School - Economics, University of Glasgow.
- Shutes, Karl & Adcock, Chris, 2013. "Regularized Extended Skew-Normal Regression," MPRA Paper 58445, University Library of Munich, Germany, revised 09 Sep 2014.
- Bansal, Prateek & Krueger, Rico & Graham, Daniel J., 2021. "Fast Bayesian estimation of spatial count data models," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
- De Luca, Giuseppe & Magnus, Jan R. & Peracchi, Franco, 2018.
"Weighted-average least squares estimation of generalized linear models,"
Journal of Econometrics, Elsevier, vol. 204(1), pages 1-17.
- Giuseppe de Luca & Jan Magnus & Franco Peracchi, 2017. "Weighted-Average Least Squares Estimation of Generalized Linear Models," Tinbergen Institute Discussion Papers 17-029/III, Tinbergen Institute.
- Giuseppe De Luca & Jan R. Magnus & Franco Peracchi, 2017. "Weighted-average least squares estimation of generalized linear models," EIEF Working Papers Series 1711, Einaudi Institute for Economics and Finance (EIEF), revised Aug 2017.
- Yu-Zhu Tian & Man-Lai Tang & Wai-Sum Chan & Mao-Zai Tian, 2021. "Bayesian bridge-randomized penalized quantile regression for ordinal longitudinal data, with application to firm’s bond ratings," Computational Statistics, Springer, vol. 36(2), pages 1289-1319, June.
More about this item
Keywords
Variable selection; Logistic regression; Sparse model; Variational Bayes; Indicator model; High-dimensional data;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:133:y:2019:i:c:p:1-19. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.