IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v83y2021i3p413-437.html
   My bibliography  Save this article

Prior sample size extensions for assessing prior impact and prior‐likelihood discordance

Author

Listed:
  • Matthew Reimherr
  • Xiao‐Li Meng
  • Dan L. Nicolae

Abstract

This paper outlines a framework for quantifying the prior’s contribution to posterior inference in the presence of prior‐likelihood discordance, a broader concept than the usual notion of prior‐likelihood conflict. We achieve this dual purpose by extending the classic notion of prior sample size, M, in three directions: (I) estimating M beyond conjugate families; (II) formulating M as a relative notion that is as a function of the likelihood sample size k, M(k), which also leads naturally to a graphical diagnosis; and (III) permitting negative M, as a measure of prior‐likelihood conflict, that is, harmful discordance. Our asymptotic regime permits the prior sample size to grow with the likelihood data size, hence making asymptotic arguments meaningful for investigating the impact of the prior relative to that of likelihood. It leads to a simple asymptotic formula for quantifying the impact of a proper prior that only involves computing a centrality and a spread measure of the prior and the posterior. We use simulated and real data to illustrate the potential of the proposed framework, including quantifying how weak is a ‘weakly informative’ prior adopted in a study of lupus nephritis. Whereas we take a pragmatic perspective in assessing the impact of a prior on a given inference problem under a specific evaluative metric, we also touch upon conceptual and theoretical issues such as using improper priors and permitting priors with asymptotically non‐vanishing influence.

Suggested Citation

  • Matthew Reimherr & Xiao‐Li Meng & Dan L. Nicolae, 2021. "Prior sample size extensions for assessing prior impact and prior‐likelihood discordance," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 413-437, July.
  • Handle: RePEc:bla:jorssb:v:83:y:2021:i:3:p:413-437
    DOI: 10.1111/rssb.12414
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12414
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12414?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. E. Gutiérrez-Peña & A. Smith & José Bernardo & Guido Consonni & Piero Veronese & E. George & F. Girón & M. Martínez & G. Letac & Carl Morris, 1997. "Exponential and bayesian conjugate families: Review and extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 6(1), pages 1-90, June.
    2. Xiao-Li Meng & Xianchao Xie, 2014. "I Got More Data, My Model is More Refined, but My Estimator is Getting Worse! Am I Just Dumb?," Econometric Reviews, Taylor & Francis Journals, vol. 33(1-4), pages 218-250, June.
    3. Satoshi Morita & Peter F. Thall & Peter Müller, 2008. "Determining the Effective Sample Size of a Parametric Prior," Biometrics, The International Biometric Society, vol. 64(2), pages 595-602, June.
    4. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    5. Rainey, Carlisle, 2016. "Dealing with Separation in Logistic Regression Models," Political Analysis, Cambridge University Press, vol. 24(3), pages 339-355, July.
    6. James Berger & M. J. Bayarri & L. R. Pericchi, 2014. "The Effective Sample Size," Econometric Reviews, Taylor & Francis Journals, vol. 33(1-4), pages 197-217, June.
    7. Bradley Efron, 2015. "Frequentist accuracy of Bayesian estimates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(3), pages 617-646, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng Yang & Yuansong Zhao & Lei Nie & Jonathon Vallejo & Ying Yuan, 2023. "SAM: Self‐adapting mixture prior to dynamically borrow information from historical data in clinical trials," Biometrics, The International Biometric Society, vol. 79(4), pages 2857-2868, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ferreira, Marco A.R. & Porter, Erica M. & Franck, Christopher T., 2021. "Fast and scalable computations for Gaussian hierarchical models with intrinsic conditional autoregressive spatial random effects," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
    2. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    3. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    4. Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
    5. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    6. Francois Olivier & Laval Guillaume, 2011. "Deviance Information Criteria for Model Selection in Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-25, July.
    7. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    8. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    9. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    10. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
    11. Padilla, Juan L. & Azevedo, Caio L.N. & Lachos, Victor H., 2018. "Multidimensional multiple group IRT models with skew normal latent trait distributions," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 250-268.
    12. Svetlana V. Tishkovskaya & Paul G. Blackwell, 2021. "Bayesian estimation of heterogeneous environments from animal movement data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    13. David Macro & Jeroen Weesie, 2016. "Inequalities between Others Do Matter: Evidence from Multiplayer Dictator Games," Games, MDPI, vol. 7(2), pages 1-23, April.
    14. Tautenhahn, Susanne & Heilmeier, Hermann & Jung, Martin & Kahl, Anja & Kattge, Jens & Moffat, Antje & Wirth, Christian, 2012. "Beyond distance-invariant survival in inverse recruitment modeling: A case study in Siberian Pinus sylvestris forests," Ecological Modelling, Elsevier, vol. 233(C), pages 90-103.
    15. Julian P. T. Higgins & Simon G. Thompson & David J. Spiegelhalter, 2009. "A re‐evaluation of random‐effects meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 137-159, January.
    16. Simon Mak & Derek Bingham & Yi Lu, 2016. "A regional compound Poisson process for hurricane and tropical storm damage," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(5), pages 677-703, November.
    17. Xi, Yanhui & Peng, Hui & Qin, Yemei & Xie, Wenbiao & Chen, Xiaohong, 2015. "Bayesian analysis of heavy-tailed market microstructure model and its application in stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 117(C), pages 141-153.
    18. Huang, Zhaodong & Chien, Steven & Zhu, Wei & Zheng, Pengjun, 2022. "Scheduling wheel inspection for sustainable urban rail transit operation: A Bayesian approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    19. Peng Yang & Yuansong Zhao & Lei Nie & Jonathon Vallejo & Ying Yuan, 2023. "SAM: Self‐adapting mixture prior to dynamically borrow information from historical data in clinical trials," Biometrics, The International Biometric Society, vol. 79(4), pages 2857-2868, December.
    20. Jorge I. Figueroa-Zúñiga & Cristian L. Bayes & Víctor Leiva & Shuangzhe Liu, 2022. "Robust beta regression modeling with errors-in-variables: a Bayesian approach and numerical applications," Statistical Papers, Springer, vol. 63(3), pages 919-942, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:83:y:2021:i:3:p:413-437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.