On the sign consistency of the Lasso for the high-dimensional Cox model
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jmva.2018.04.005
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yingying Fan & Cheng Yong Tang, 2013. "Tuning parameter selection in high dimensional penalized likelihood," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 531-552, June.
- Ethan X. Fang & Yang Ning & Han Liu, 2017. "Testing and confidence intervals for high dimensional proportional hazards models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1415-1437, November.
- Wei Lin & Jinchi Lv, 2013. "High-Dimensional Sparse Additive Hazards Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 247-264, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zemin Zheng & Jie Zhang & Yang Li, 2022. "L 0 -Regularized Learning for High-Dimensional Additive Hazards Regression," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2762-2775, September.
- Xiaobo Wang & Jiayu Huang & Guosheng Yin & Jian Huang & Yuanshan Wu, 2023. "Double bias correction for high-dimensional sparse additive hazards regression with covariate measurement errors," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 115-141, January.
- Alexander Chudik & George Kapetanios & M. Hashem Pesaran, 2016.
"Big Data Analytics: A New Perspective,"
CESifo Working Paper Series
5824, CESifo.
- A. Chudik & G. Kapetanios & M. Hashem Pesaran, 2016. "Big Data Analytics: A New Perspective," Cambridge Working Papers in Economics 1611, Faculty of Economics, University of Cambridge.
- Alexander Chudik & George Kapetanios & M. Hashem Pesaran, 2016. "Big data analytics: a new perspective," Globalization Institute Working Papers 268, Federal Reserve Bank of Dallas.
- Emre Demirkaya & Yang Feng & Pallavi Basu & Jinchi Lv, 2022. "Large-scale model selection in misspecified generalized linear models [Information theory and an extension of the maximum likelihood principle]," Biometrika, Biometrika Trust, vol. 109(1), pages 123-136.
- Yunxiao Chen & Xiaoou Li & Jingchen Liu & Zhiliang Ying, 2017. "Regularized Latent Class Analysis with Application in Cognitive Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 660-692, September.
- Wang, Yuejing & Ye, Wuyi & Jiang, Ying & Liu, Xiaoquan, 2024. "Volatility prediction for the energy sector with economic determinants: Evidence from a hybrid model," International Review of Financial Analysis, Elsevier, vol. 92(C).
- Zhong, Yan & Sang, Huiyan & Cook, Scott J. & Kellstedt, Paul M., 2023. "Sparse spatially clustered coefficient model via adaptive regularization," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
- Tae-Hwy Lee & Ekaterina Seregina, 2020.
"Learning from Forecast Errors: A New Approach to Forecast Combination,"
Working Papers
202024, University of California at Riverside, Department of Economics.
- Tae-Hwy Lee & Ekaterina Seregina, 2020. "Learning from Forecast Errors: A New Approach to Forecast Combinations," Papers 2011.02077, arXiv.org, revised May 2021.
- Zhang, Tonglin, 2024. "Variables selection using L0 penalty," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
- Sokbae Lee & Myung Hwan Seo & Youngki Shin, 2016.
"The lasso for high dimensional regression with a possible change point,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 193-210, January.
- Sokbae (Simon) Lee & Myung Hwan Seo & Youngki Shin, 2014. "The lasso for high-dimensional regression with a possible change-point," CeMMAP working papers 26/14, Institute for Fiscal Studies.
- Sokbae (Simon) Lee & Myung Hwan Seo & Youngki Shin, 2014. "The lasso for high-dimensional regression with a possible change-point," CeMMAP working papers CWP26/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Qu, Lianqiang & Song, Xinyuan & Sun, Liuquan, 2018. "Identification of local sparsity and variable selection for varying coefficient additive hazards models," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 119-135.
- Chen, J. & Li, D. & Li, Y. & Linton, O. B., 2022.
"Estimating Time-Varying Networks for High-Dimensional Time Series,"
Janeway Institute Working Papers
2231, Faculty of Economics, University of Cambridge.
- Jia Chen & Degui Li & Yuning Li & Oliver Linton, 2023. "Estimating Time-Varying Networks for High-Dimensional Time Series," Papers 2302.02476, arXiv.org.
- Chen, J. & Li, D. & Li, Y. & Linton, O. B., 2022. "Estimating Time-Varying Networks for High-Dimensional Time Series," Cambridge Working Papers in Economics 2273, Faculty of Economics, University of Cambridge.
- Dong, Ruipeng & Li, Daoji & Zheng, Zemin, 2021. "Parallel integrative learning for large-scale multi-response regression with incomplete outcomes," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
- Jeon, Jong-June & Kwon, Sunghoon & Choi, Hosik, 2017. "Homogeneity detection for the high-dimensional generalized linear model," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 61-74.
- Shi, Chengchun & Lu, Wenbin & Song, Rui, 2019. "Determining the number of latent factors in statistical multi-relational learning," LSE Research Online Documents on Economics 102110, London School of Economics and Political Science, LSE Library.
- Zhao, Jing, 2022. "Exploring the influence of the main factors on the crude oil price volatility: An analysis based on GARCH-MIDAS model with Lasso approach," Resources Policy, Elsevier, vol. 79(C).
- Li, Jun & Wang, Huijun & Yu, Jianfeng, 2021. "Aggregate expected investment growth and stock market returns," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 618-638.
- Yang Feng & Qingfeng Liu, 2020. "Nested Model Averaging on Solution Path for High-dimensional Linear Regression," Papers 2005.08057, arXiv.org.
- Tata Subba Rao & Granville Tunnicliffe Wilson & Ngai Hang Chan & Ye Lu & Chun Yip Yau, 2017. "Factor Modelling for High-Dimensional Time Series: Inference and Model Selection," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 285-307, March.
- A. Chudik & G. Kapetanios & M. Hashem Pesaran, 2018.
"A One Covariate at a Time, Multiple Testing Approach to Variable Selection in High‐Dimensional Linear Regression Models,"
Econometrica, Econometric Society, vol. 86(4), pages 1479-1512, July.
- Alexander Chudik & George Kapetanios & M. Hashem Pesaran, 2016. "A one-covariate at a time, multiple testing approach to variable selection in high-dimensional linear regression models," Globalization Institute Working Papers 290, Federal Reserve Bank of Dallas.
- Chudik, A. & Kapetanios, G. & Pesaran, Hashem, 2016. "A One-Covariate at a Time, Multiple Testing Approach to Variable Selection in High-Dimensional Linear Regression Models," Cambridge Working Papers in Economics 1677, Faculty of Economics, University of Cambridge.
More about this item
Keywords
Cox proportional; Empirical process; Hazard model; Lasso; Mutual coherence; Oracle property; Sparse recovery;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:167:y:2018:i:c:p:79-96. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.